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1 Introduction 3

1 Introduction

The present unit is part of the walk The Azioms of Zermelo and Fraenkel.

The most prominent system of axioms for mathematics is the axiomatics of Ernst Zermelo
(1871 - 1953) and Abraham Fraenkel (1891 - 1965) abbreviated by ZFC where the letter C
stands for the axiom of choice. It consists of the following axioms:

ZFC-0: Basic Axiom

ZFC-1: Axiom of Extension
ZFC-2: Axiom of Existence
ZFC-3:  Axiom of Specification
ZFC-4: Axiom of Pairing
ZFC-5: Axiom of Unions
ZFC-6: Axiom of Powers
ZFC-T7: Axiom of Foundation
ZFC-8: Axiom of Substitution
ZFC-9: Axiom of Choice
ZFC-10: Axiom of Infinity

The present unit explains the axioms ZFC-0 to ZFC-3. Axioms ZFC-4 to ZFC-7 are explained
in Unit Unions and Intersection of Sets [Garden 2020a]. Axioms ZFC-8 and ZFC-9 are
explained in Unit Families and the Aziom of Choice [Garden 2020b]. Finally, Axiom ZFC-
10 is explained in Unit Successor Sets and the Azioms of Peano [Garden 2020c]. For
information about the remaining axioms see also the historical note at the end of Section 2.

The mathematical universe (see Section 2):

We will call the totality of mathematics a mathematical universe or just a universe. Note
that we speak of a mathematical universe and not of the mathematical universe. There may
and do exist different mathematical universes with similar properties. You may think of the
definition of a group. All groups have the same (defining) properties, however there exist
different groups. Our mathematical universes will all obey the same axioms, namely the
axioms of Zermelo and Fraenkel listed above, but there do exist different universes fulfilling
these axioms.

In principle, we should have to start every definition and every theorem by the words “Let
U be a mathematical unwerse (fulfilling the azioms of Zermelo and Fraenkel), and ...".
However, the mathematical tradition is to omit this expression.

The first main idea is to postulate that a mathematical universe consists of a collection of sets.
In other words, every mathematical object is a set. This approach sounds contra-intuitive
since we are used to distinguish between sets and their elements like the set Ny of the natural
numbers and its elements 0,1, 2,....

Looking at the simple set A := {{x},{y}} it becomes obvious that there is no strict distinction
between sets and elements. The sets {x} and {y} are at the same time elements of the set A.
So we make one step further and say that every element is also a set. For example, the natural
numbers will be defined as specific sets, namely

0:=( (empty set),1:={0},...,n+1:={0,1,2,...,n}...


https://www.math-garden.com/walk/zfc-axioms
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and so on. For more detailed information about natural numbers see Unit The Natural
Numbers and the Principle of Induction [Garden 2020d].

The second main idea is to postulate that the sets of a universe have the property that for
each two sets A and B of the universe we either have

A€Bor A ¢B.

In other words, we assume that for each two sets A and B of a universe U, exactly one of the
two relations A € B or A ¢ B holds. However, it may be difficult to decide which of the two
possibilities is correct for two given sets A and B.

This is the main content of the basic axiom (see Axiom 2.1).

Subsets and the axiom of extension (see Section 3):

The basic axiom allows us to define a subset of a set in the usual way: A set A is a subset
of a set B if every element of the set A is also an element of the set B. In this case we write
A C B (see Definition 3.1).

Our next task is to postulate when two sets A and B are equal: The axiom of extension (Axiom
3.3) answers this question as follows:

Two sets A and B are equal if and only if we have
A CBand B C A.

In this case we write A = B. Otherwise, we write A # B.

We want to exclude the case that a mathematical universe does not contain any sets. Therefore,
we will require that each universe contains at least one set, namely the empty set. This is the
content of the axiom of existence (Axiom 3.12).

Sentences (see Section 4):

So far we know what a mathematical universe U is, namely a collection of sets with the property
that for each two sets A and B of the universe U we either have

A€BorA¢B.

The next question that we want to answer is: How do we formulate a mathematical sentence?
Or, equivalently: What is the mathematical language? Given two sets A and B of a universe
U, we have introduced the following four possible relations between these two sets:

AE€B,A¢B,A=BandA #B.

These four expressions are called elementary sentences (Definition 4.2). They form the
elementary part of the mathematical language. Mathematical sentences are then recursively
defined, for example by ¢ A (¢ and V) or by @ V1 (@ or V) if ¢ and 1 are mathematical
sentences. A complete definition will be given in Definition 4.6.

The elementary sentences and the sentences already constitute the mathematical language.
Every definition and every theorem can be expressed as a sentence. A definition like the
definition of a subset introduced above is nothing else than an abbreviation of a specific
sentence.
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The axiom of specification (see Section 5):

We are used to define subsets of a given set by specifying some interesting properties. For
example, the set E of the even integers is defined as follows:

E={x€Z|xeven}={x€Z|3z€Z:x =2z}

Note that the expression 3z € Z : x = 2z is a sentence. The axiom of specification (Axiom
5.2) guarantees the existence of sets like the set E: Given a set A and a mathematical property
(sentence) @ = ¢(x) depending on a variable x, the axiom of specification guarantees the
existence of the set

xeAlek)}

In the above example, ¢@(x) is the sentence 3z € Z : x = 2z.

However, this set may be empty. An important conclusion of the axiom of specification is the
fact that for each set A of a universe U, there exists a set B of the universe U which is no
element of the set A (Theorem 5.7). In particular, there does not exist a set A containing all
sets of the universe.

2 The Mathematical Universe

The Basic Axiom and the Definition of a Universe:

2.1 Axiom. (ZFC-0: Basic Axiom) (a) A mathematical universe U consists of
sets.

(b) There is the following relation between the sets of a universe U: For any two sets A
and B of the universe U, either the set A is an element of the set B or the set A is no
element of the set B.

(c) If a set A is an element of a set B, then we also say that the set A is contained in
the set B or, equivalently that the element A is contained in the set B.?

(d) If a set A is an element of a set B, then we write A € B. If the set A is no element of
the set B, then we write A ¢ B.

?Note that the expression A is contained in the set B means A € B and not A C B (A is a subset of
B) as defined in Definition 3.1.

2.2 Remarks. (a) Note that we did not define what a set is. We just said that our
mathematical universe consists of sets. However, the basic axiom states that there exists
a relation between any two sets A and B, namely either A € B or A ¢ B.

In other words, the mathematical objects are exactly the sets of the universe U. Mathe-

matics can be understood as the study of the relation between these sets.

(b) We are used to think of elements and sets as different objects: For example, the
number 1 is an element of the set Ny of the natural numbers.

In the axiomatic approach of ZFC every element is itself a set. Even the natural numbers
will be constructed as specific sets. For example, the number 1 will be defined to be the
set {()} containing the empty set as its only element. The definition of numbers based on
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set theory is explained in Unit The Natural Numbers and the Principle of Induction
[Garden 2020d].

When we use expressions of the form Let x be an element of the set A or The element
x of the set A ..., we want to emphasize that x is an element of the set A. Nevertheless,
we have to keep in mind that the element x is also a set itself.

(c) Note that for any two sets of the universe, we either have A € B or A ¢ B, and we
either have B € A or B ¢ A.

(d) Formally, we always would have to say Let U be a universe fulfilling the azioms ...
For the moment being we only have introduced the basic axiom ZFC-0. Successively, we
will introduce further axioms. During this unit every theorem will refer to a mathematical
universe fulfilling the axioms introduced so far.

(e) Note that we often speak of the universe and that we require that the universe fulfills
certain axioms, but there may exist and do exist different universes fulfilling the same
axioms, but having different properties (see Example 2.3).

Examples of Universes:

2.3 Examples. Let U and V be the universes defined as follows:

(i) The universes U and V both consist of the two sets A and B. We write U = [A, B] and
V = [A,B].

(ii) In the universe U we define A € A, A € B, B ¢ A and B € B.

(iii) In the universe V we define A ¢ A, A€ B, B¢ A and B ¢ B.

In the universe U there exists a set containing all sets of the universe, namely the set B,
and every set has at least one element.

In the universe V there is no set containing all sets of the universe, and there is a set
containing no elements, namely the set A.

Hence, the universes U and V consist of the same sets, but have different properties.

2.4 Remarks. (a) It is a bit difficult to imagine two sets A and B with the property
A € A or the properties A € B and B € A.

In this context it may be helpful to think of sets as of mathematical textbooks: For two
mathematical textbooks A and B, we define A € B if and only if the book A is cited in
the book B. It may occur that a book A is cited in a book B and, at the same time, the
book B is cited in the book A (A € B and B € A). A book could also cite itself (not very
common, but thinkable) which corresponds to the case A € A.

(b) However, we will exclude these strange possibilities in the axiom of foundation (see
Axiom ?77).

Historical Note:

At the end of the 19" century and in the beginning of the 20*" century was a growing interest

into set theory. This interest had two main sources:
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Richard Dedekind (1831 - 1916) investigated systematically the nature of the natural numbers
[Dedekind 1888] and of the real numbers [Dedekind 1872]. Georg Cantor (1845 - 1918) started
a systematic research on sets and the cardinalities of sets. He started this research with the
observation that the cardinality of the set of the real numbers is strictly greater than the
cardinality of the set of the natural numbers (see [Cantor 1874]).

On the other hand David Hilbert (1862 - 1943) emphasized the importance of the axiomati-
zation of mathematics and published in 1899 his Grundlagen der Geometrie [Hilbert 1899]
where he provided a modern axiomatics of a 3-dimensional affine space.

In 1908 Ernst Zermelo published a fundamental paper [Zermelo 1908b] containing an axiomat-
ics of mathematics based on set theory where he refers explicitly to the former work of Cantor
and Dedekind. This paper contains already most of the axioms of Zermelo and Fraenkel listed
in Section 1.

The full set of axioms as described in Section 1 is only contained in the paper [Zermelo 1930]
of Zermelo.

The basic axiom (Axiom 2.1) reads in [Zermelo 1908b] as follows:

1. Die Mengenlehre hat zu tun mit etnem “Bereich” B von Objekten, die wir einfach als
“Dinge” bezeichnen wollen, unter denen die “Mengen” einen Teil bilden. [...] Von einem
Dinge a sagen wir, es “existiere”, wenn es dem Bereich B angehdrt; [...]

2. Zwischen den Dingen des Bereiches B bestehen gewisse “Grundbeziehungen” der Form
aeb. Gult fiir zwer Dinge a, b die Beziehung aeb, so sagen wir “a sei Element der Menge
b” oder “ b enthalte a als Element” oder “besitze das Element a”. Ein Ding b, welches
ewmn anderes a als Element enthadlt, kann immer als eine Menge bezeichnet werden, aber
auch nur dann - mit einer einzigen Ausnahme (Aziom II).

See [Zermelo 1908b, p. 262].

1. Set theory is concerned with a domain B of individuals, which we shall call simply
objects and among which are the sets. [...] We say of an object a that it “exists” if it
belongs to the domain B; [...]

2. Certain fundamental relations of the form aeb obtain between the objects of the domain
B. If for two objects a and b the relation a ¢ b holds, we say “a is an element of the set
b” “b contains a as an element”, or “ b possesses the element a”. An object b may
be called a set if and - with a single exception (Aziom II) - only if it contains another
object, a, as an element.

See [Zermelo 1967b, p. 201].

It is remarkable that Zermelo does not define what a set is, but that he restricts himself to
describe the properties of a set. This approach follows the geometric axiomatics of Hilbert in
[Hilbert 1899] where points, lines and planes are not defined, but their properties are described
in the corresponding axioms.

Note that Zermelo makes a difference between a set and an object insofar as a set has to contain
at least one element (with one exception which is of course the empty set). So the objects of
Zermelo are the sets of the basic axiom (Axiom 2.1).

An earlier definition of a set is due to Richard Dedekind who gives the following definition:

Es kommt sehr haufig vor, dass verschiedene Dinge a,b,c,... ... 1m Geiste zusammen-
gestellt werden, und man sagt dann, dass sie ein System S bilden; man nennt die Dinge
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a,b,c,... die Elemente des Systems S ...; umgekehrt besteht S aus diesen Elementen.
Ein solches System S ... ist als Gegenstand unseres Denkens ebenfalls ein Ding ...

See [Dedekind 1888] or [Dedekind 1932, vol.3, pp. 344 - 345].
It happens quite often that different things a,b,c... ... are summarized in one’s mind’s
eye; tn this case one says that they form a system S; the things a,b,c,... are called the

elements of the system S ...; conversely, the system S consists of these elements. Such a
system S ... as an object of our thinking is again a thing ...

(Translation by the author.)

Dedekind distinguishes between elements (things) and sets (systems) and points out that every
set (system) is also an element (thing). In our terminology, the sets are the things (and of
course the systems) of Dedekind.

The symbol € has been introduced by Giuseppe Peano (1858 - 1932) as the Greek letter e:

Signo K significatur classis, siwe entium aggregatio. Signum e significat est. Ita aeb
legitur a est quoddam b; aeK significat a est quaedam classis; aeP significat a est quaedam
propositio.

See [Peano 1889a, p. x].

The sign K means class, or aggregate of objects. The sign ¢ means is. Thus aeb s read
aisab;, aeK means ais a class, a ¢ P means a is a proposition.

See [Peano 1889Db, p. 89]

3 Subsets and the Axiom of Extension

Definition of a Subset:

3.1 Definition. Let A and B be two sets.
(a) The set A is called a subset of the set B if every element of the set A is also an
element of the set B. If the set A is a subset of the set B, we write A C B.

(b) If the set A is a subset of the set B and if the set B contains an element b not contained
in the set A, then the set A is called a proper subset of the set B. In this case we write
A C B.

ACB ACB AcB
B B B

G ) e

French / German. Subset = Sous-ensemble = Teilmenge; Proper subset = Sous-ensemble
propre = Echte Teilmenge.

3.2 Example. Let A be a set containing exactly the elements a and b, and let B be a
set containing exactly the elements a, b and c.

(a) The set A is a subset of the set B.
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(b) Since the element c is not contained in the set A, the set A is even a proper subset of
the set B.

The Axiom of Extension:

3.3 Axiom. (ZFC-1: Axiom of Extension) (a) Two sets A and B are equal if and
only if the set A is a subset of the set B and if the set B is a subset of the set A.

(b) If the sets A and B are equal, then we write A = B. If the sets A and B are not equal,
then we write A # B. Hence, we have

A =B if and only if A C B and B C A.

French / German. Axiom of extension = Axiome d’extensionalité = Extensionalitdtsaxi-
om.

3.4 Definition. Let A, B and C be three sets. If the sets A, B and C contain exactly the
elements a, a and b and a, b and c, respectively, then we write A = {a}, B = {a, b} and
C ={a,b,c}, and so on.

3.5 Remarks. (a) The axiom of extension can also be expressed by saying that two sets
A and B are equal if and only if they contain the same elements.
(b) Every element only appears once in a set A. As an example consider the set A =
{a, b, c} consisting of the elements a, b and c.
(1) If a # b and b # ¢ (implying a # c), then the set A ={a, b, c} consists of the elements
a, b and c.
(ii) If a = b and a # ¢ (implying b # c), then we have A ={a, b, c} ={a,c} ={b,c}, and
the set A consists of the elements a and b or, equivalently, of the elements b and c.
(iii) If a = b and a = c (implying b = ¢), then we have A = {a, b, c} = {a} = {b} = {c},
and the set A consists of one element a =b = c.
(c) For a set A we only distinguish between the two cases whether an element a is contained
in the set A or not. In particular, the order of the elements does not play any role. For
example, we have {a, b} ={b, a}.
(d) Note the difference between the two notions is element of, that is, € and is a subset
of, that is, C: Let A and B be two sets. If the set A is a subset of the set B, that is,
if A C B, then every element of the set A is an element of the set B. If the set A is an
element of the set B, that is, A € B, then the set A is itself an element of the set B.
For example, if the sets A ={a, b}, B ={a,b,c}, C = {{a},{a,b}} and D := {a,b,{a, b}}
exist, then we have

ACB,AcC, ACDandA€D.

The example shows in particular that we can have A € D and A C D at the same time.
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3.6 Examples. (a) Let U be the universe consisting of two (different) sets A and B such
that

A¢A/AcB,BecAandB¢B.
The universe U fulfills the axiom of extension.

(b) Let V be the universe consisting of two (different) sets A and B such that
A€A/AeB,BeAandBeB.

The universe V does not fulfill the axiom of extension since the sets A and B have the
same elements, but the sets A and B are supposed to be different.

Elementary Properties of Sets:

3.7 Proposition. Let A be a set.
(a) The set A is a subset of itself, that is, we have A C A.
(b) The set A equals itself, that is, we have A = A.

Proof. (a) Let a be an element of the set A. Then the element a is obviously contained in
the set A implying that the set A is a subset of the set A.

(b) By (a), we have A C A and A C A implying that A = A. |
3.8 Proposition. Let A and B be sets. We have
A =B if and only if B = A.

Proof. We have

A=B&S&ACBandBCA&S&BCAand ACB & B=A.

3.9 Proposition. Let A, B and C be sets.

(a) If we have A C B and B C C, then we have A C C.
(b) If we have A = B and B C C, then we have A C C.
(c) If we have A C B and B = C, then we have A C C.
(d) If we have A C B and B C C, then we have A C C.
(e) If we have A C B and B C C, then we have A C C.
(f) If we have A C B and B C C, then we have A C C.
(g) If we have A = B and B C C, then we have A C C.
(h) If we have A C B and B = C, then we have A C C.
(i) If we have A = B and B = C, then we have A = C.

Proof. (a) Let x be an element of the set A. Since the set A is a subset of the set B, the
element x is contained in the set B. Since the set B is a subset of the set C, the element x is
also contained in the set C. It follows that the set A is a subset of the set C.
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(b) and (c) follow from (a) since the relation A = B implies that the set A is a subset of the
set B.

(e) It follows from (a) that the set A is a subset of the set C. Since the set B is a proper subset
of the set C, there exists an element c of the set C not contained in the set B. Since the set A
is a subset of the set B, the element c is not contained in the set A implying that the set A is
a proper subset of the set C.

(d) and (g) follow from (e).

(f) It follows from (a) that the set A is a subset of the set C. Since the set A is a proper subset
of the set B, there exists an element b of the set B not contained in the set A. Since the set B
is a subset of the set C, the element b is also contained in the set C. It follows that the set A
is a proper subset of the set C.

(h) follows from (f).

(i) It follows from (a) that the set A is a subset of the set C and that the set C is a subset of
the set A implying that A = C. O

When is A Z B?

3.10 Proposition. Let A and B be two sets. Then the following conditions are equiva-
lent:

(i) The set A is no subset of the set B. A B
(ii) There exists an element a of the set ‘
A which is not contained in the set B.
Proof. (i) = (ii): Suppose that the set A is no subset of the set B. Assume that every

element of the set A is contained in the set B. This means that the set A is a subset of the set

B, in contradiction to Condition (i).

(ii) = (i): Suppose that there exists an element a of the set A which is not contained in the
set B. Assume that the set A is a subset of the set B. Then every element of the set A is
contained in the set B. In particular, the element a is contained in the set B, in contradiction
to Condition (ii). m|

The Empty Set and the Axiom of Existence:

3.11 Definition. A set which does not contain any element is called empty.
French / German. Empty set = Ensemble vide = Leere Menge.

3.12 Axiom. (ZFC-2: Axiom of Existence) There exists an empty set.
French / German. Axiom of existence = Axiome d’existence = Existenzaxiom.

3.13 Remark. The axiom of existence means that each universe U fulfilling the axiom
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of existence contains a set A such that

X ¢ A for all sets X of the universe U.

3.14 Proposition. (a) The empty set is a subset of every set.
(b) If A and B are empty sets, then we have A = B, that is, the empty set is unique.

Proof. (a) Let A be an empty set, and let X be an arbitrary set. Assume that the set A is
no subset of the set X. By Proposition 3.10, there exists an element a of the set A which is
not contained in the set X, in contradiction to the fact that the set A does not contain any
element.

(b) If A and B are two empty sets, then it follows from (a) that the set A is a subset of the
set B and that the set B is a subset of the set A implying that A = B. O

3.15 Definition. The empty set is denoted by 0.

3.16 Example. The universe U of Example 2.3 does not fulfill the axiom of existence,
whereas the universe V of Example 2.3 does fulfill the axiom of existence.

Historical Note:

An early definition of subsets is given by Richard Dedekind:

Ein System A heifit Teil eines Systems S, wenn jedes Element von A auch Element von
S ust.

See [Dedekind 1888] or [Dedekind 1932, vol. 3, p. 345|.

A aystem A 1is called part of a system S if every element of A is also an element of S.
(Translation by the author.)

Dedekind uses the word system for sets. The symbol C has been introduced by Ernst Schréder
(1841 - 1902):

Das andere Zeichen C lese man: “untergeordnet”, auch, wenn man w:ll: “subordinirt”.
... Die Kopula “ist” wird bald die eine, bald die andere der berden Beziehungen ausdri-
cken, die wir maittels der Zeichen C und = dargestellt haben. Zu Ihrer Darstellung wird
sich darum ein aus den beiden letzten zusammengesetztes Zeichen € [...] empfehlen.
Ausfihrlichst wird dieses Zeichen als “untergeordnet oder gleich” zu lesen sein.

See [Schroder 1890, 129 and 132].

The other sign C 1is read “inferior”, or, if you want “subordinate”. ... The copula “es” unll
express the one or the other of the two relations that we represent by the signs C and
=. To its representation the sign € built from these two signs commends itself. [...] In
detail this sign has to be read as “subordinate or equal”.

(Translation by the author.)

Schroder introduced these signs in the context of logic.

The sign C instead of € has been used later on by Felix Hausdorff (1868 - 1942) (see [Hausdorff
1914, p. 3)).



3 Subsets and the Axiom of Extension 13

The axiom of extension is already contained in [Dedekind 1888]:

Das System S ist daher dasselbe wie das System T, in Zeichen S =T, wenn jedes Element
von S auch Element von T und jedes Element von T auch Element von S ist. Footnote:
Auf welche Weise diese Bestimmtheit zustande kommt, und ob wir einen Weg kennen,
um hieriber zu entscheiden, ist fur alle Folgende ganzlich gleichgiiltig,;

See [Dedekind 1888] or [Dedekind 1932, vol.3, p.345].

The system S 1is therefore the same as the system T, notation S =T, if every element of
S s also an element of T and if every element of T s also an element of S. Footnote:
It 1s completely indifferent for the following how this relation is achieved or whether we
know a way how to decide about this relation.

(Translation by the author.)

Dedekind wants to express in the footnote that the way how an element is constructed does
not matter for the decision whether it is an element of a set. For example, we have

. 1
{2} = {V4} = {lim 2+ —}.
n—oo n
We can also speak of the set
A:={(a,b,c) e NXxNxN|a™+b"™ =c" for some n > 3}.

Today, we know that A = (). Before the proof of Andrew Wiles and others we did not “know
a way how to decide about the relation” x € A.
This is also the reason why this axiom is called the axiom of eztension in contrary to an axiom

of intension.

The first almost complete list of axioms is contained in [Zermelo 1908b]: The axiom of extension
is called the Aziom der Bestimmtheit:

Axiom 1. Ist jedes Element einer Menge M gleichzeitig Element von N und umgekehrt,
1st also gleichzeitig M € N und N € M, so ist tmmer M = N. Oder kirzer: jede Menge
1st durch thre Elemente bestimmt.

See [Zermelo 1908b, p. 263].

Axiom I. (Aziom of extensionality.) If every element of a set M 1is also an element of
N and vice versa, if, therefore, both M € N and N € M, then always M = N; Or more
briefly: Every set is determined by its elements.

See [Zermelo 1967b, p. 201].

The axiom of existence is also contained in [Zermelo 1908b]: It is part of the so-called Aziom
der Elementarmengen:

Axiom II. Es gibt eine (uneigentliche) Menge, die “Nullmenge” 0, welche gar keine Ele-
mente enthdlt. [...]

See [Zermelo 1908b, p. 263].

Axiom II. (Aziom of elementary sets.) There ezists a (fictitious) set, the null set, 0,
that contains no element at all. [...]

See [Zermelo 1967b, p. 202].

For a long time the empty set has been abbreviated by the number 0. This fits very well to

the definition of the natural numbers: One defines 0 := (). The symbol ) for the empty set has
been introduced by Bourbaki. See for example [Bourbaki 2006, p. E.IL6].
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4 Sentences

In order to formulate mathematical definitions and theorems, we need a mathematical language.
We will choose a set-theoretical language. Its main building blocks are sentences. We start
with the so-called elementary sentences:

Definition of Elementary Sentences:

4.1 Remark. Given a universe U and two sets A and B of the universe U it follows from
the basic axiom (Axiom 2.1) and the axiom of extension (Axiom 3.3) that we always have

(AeBorA¢B)and (A=Bor A#B).

This fact motivates the following definition of an elementary sentence:

French / German. Elementary Sentence = Terme élémentaire = Elementare Aussage.

4.3 Example. Let @ be the elementary sentence The sets A and B are equal, that is,
A =B.

Then the variables A and B are defined by the (elementary) sentence ¢. Both variables
are contained in the sentence .

French / German. Negation = Négation = Negation.

4.5 Proposition. (a) The negations of the elementary sentences are as follows:
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Elementary Sentence

Negation

The set A is an element of the set B.

Equivalently, A € B.

The set A is no element of the set B.
Equivalently, A ¢ B.

The set A is no element of the set B.

Equivalently, A ¢ B.

The set A is an element of the set B.
Equivalently, A € B.

The sets A and B are equal.
Equivalently, A = B.

The sets A and B are distinct.
Equivalently, A # B.

The sets A and B are distinct.
Equivalently, A # B.

The sets A and B are equal.
Equivalently, A = B.

(b) The negation of an elementary sentence is again an elementary sentence. For each
elementary sentence ¢, there is exactly one negation —@.

Proof. (a) By the basic axiom (Axiom 2.1), for two sets A and B, we either have

A €Bor A ¢B.

Hence, the sentence A € B is true if and only if the sentence A ¢ B is false and vice versa. It
follows that
—(Ae€eB)=(A¢B)and —=(A ¢ B)= (A €B).

By the axiom of extension (Axiom 3.3), we have
—(A=B)=(A#B)and (A #B)=(A=B).

(b) follows from (a). O

Definition of Sentences:
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French / German. Sentence = Terme = Aussage. Bounded variable = Variable liée =
Gebundene Variable. Free variable = Variable libre = Freie Variable.

4.7 Examples. (a) The sentence —@ APV @ < ¢ —  means

(CoIAP) Vo) & (0= W),

(b) The sentence
(Xe A)A (X € B)

is true if the set X is an element of the set A and an element of the set B. The variables
X, A and B are free variables of this sentence.

(c) The sentence
(VX e A)(X € B)

is true if every element of the set A is also contained in the set B. In other words, the
sentence is true if the set A is a subset of the set B. The variable X is a bounded variable
of this sentence. The variables A and B are free variables.
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(d) The sentence
(VXecA)3YeEB)(X=Y)

is true if each element X of the set A is also an element of the set B. In other words, it
says the same as the sentence in (c). The variables A and B are free variables, and the
variables X and Y are bounded variables.

(e) Since the sentences in (c) and (d) express the same fact, the following sentence is true:
(VA)(VB)<((VX €A) = (XEB)) o (VZEA)(AYEB) (Z= Y))).

All variables are bounded.

4.8 Remarks. (a) If the variable X is not contained in the sentence ¢, then the sentence
There exists an element X such that @ is a sentence with the same meaning as the
sentence @.

For example, the sentence 3 X (A = B) has the same meaning as the sentence A = B.

(b) If the variable X is not contained in the sentence @, then the sentence For all elements
X, (we have) @ is a sentence with the same meaning as the sentence .

For example, the sentence V X(A = B) has the same meaning as the sentence A = B.

(c) By Definition 4.6, the sentence @ — 1 is defined to be true if and only if one of the
following three cases occurs: 1. @ is true and 1 is true. 2. @ is false and 1 is true. 3. @
is false and 1 is false.

This definition is due to the fact that we want to express that the sentence 1\ follows from
the sentence ¢, in other words, that the sentence \ is true if the sentence ¢ is true. If
the sentence o is false, the sentence \p may be true or false.

(d) The condition, that two bounded variables of a sentence ¢ have to be different vari-
ables, shall avoid sentences of the form V X 3 X ¢ instead of VX3 Y ¢. However, the sets
X and Y may be identical. For example, the sentence

(VXeA)(IYeB)(X=Y)

enforces that X =Y.

4.9 Remark. An (elementary) sentence may be either true or false. If A and B are two
sets such that the set A is an element of the set B, then the elementary sentence A € B
is true, and the elementary sentence A ¢ B is false. So we have carefully to distinguish
whether we just formulate an elementary sentence (which may be true or false) or whether
we formulate a theorem which is true and has to be proven. It will be clear from the context
whether we speak of the sentence A € B or of the theorem A € B.

In fact, there is a third case: It may be that there exist two different universes U and V
such that the sentence ¢ is true in the universe U and false in the universe V. A famous
example is the continuum hypothesis of Georg Cantor: It states that there does not exist
any set X fulfilling the following inequalities

INol < [X] < [R|
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where |Z| denotes the cardinality of the set Z (see Unit Cardinal Numbers [Garden
2020¢]). Paul Cohen (1934 - 2007) proved in [Cohen 1963] and in [Cohen 1964] that there
exist two universes U and V fulfilling the axioms of Zermelo and Fraenkel such that the

continuum hypothesis is fulfilled in the universe U, but not in the universe V.

Negations of Sentences:

4.10 Proposition. (a) We have —(—@) < @ for all sentences @.
(b) We have (¢ /\—¢) < FALSE and (¢ V —¢) < TRUE for all sentences .

(c) The negations of sentences are as follows.

Sentence Negation
© A. =@ V).
[GRAVAUR = A.
© — . @ N ().
© — . © & .
IX . VX—o.
VX . IX —e.

Proof.  For the proof we use so-called truth tables.

In a truth table we indicate the

possible values (true / false) for the sentences ¢ and 1 and compute the resulting value for

the sentences « and 3 derived from the sentences ¢ and . For that computation we use

Definition 4.6 which defines when a sentence is true. If the values for two sentences o and 3

are identical, then we have « < f3.

(a) We have —(—@) & @:

o | "o | ~(—o)
T| F T
F| T F

(b) We have ¢ A\ —¢ < FALSE and ¢ V —¢ < TRUE:

@ |~ | @oA7Q | @V o

T| F F T

F| T F T

(c) Step 1. We have =(@ A1) & —@ V —:

eV | oAb | ~(eAY) |~ | P | ~@V
T|T T F F | F F
T|F F T F | T T
F|T F T T | F T
F|F F T T | T T

Step 2. We have = (@ V) & =@ A —:
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|V |V | ~(eVY) | o | | oA
T|T T F F F F
T|F T F F T F
F|T T F T F F
F|F F T T T T
Step 3. We have —(¢@ — V) & @ A -
eV |lo—=b | ~(e—=V) | Y| oA
T| T T F T| F F
T|F F T T| T T
F|T T F F| F F
F|F T F F| T F
Step 4. We have —(¢@ < V) & (@ « —):
plb || (o) | 0| | oo
T | T T F T F F
T | F F T T T T
F|T F T F F T
F|F T F F T F
The other two assertions are obvious. O

4.11 Proposition. (a) Let , 3 and y be three sentences. Then we have
(x AB) Ay =a/N(p/Avy) (associativity).

We shall simply write oc /\ 3 /\y.
(b) Let «, 3 and 'y be three sentences. Then we have

(xVB)Vy=aV(BVy) (associativity).

We shall simply write «V 3 V7.

(c) Let @ and \ be two sentences. Then we have
¢ AP =P A ¢ (commutativity).
(d) Let @ and 1 be two sentences. Then we have
eV =19V ¢ (commutativity).
(e) Let &, p and y be three sentences. Then we have
aAPBVY)=(axAB)V (xAy) and («V B) Ay =(axAy)V (B Av) (distributive laws).
(f) Let «, B and y be three sentences. Then we have
aV(BAY)=(axVR)IA(xVy) and (x AB)Vy = (aVy)A(BVy) (distributive laws).

Proof. We shall use truth tables.
(a) and (b) We have
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x | By | (@ABAY [ aABAY) | (aVB)VY | aV(BVY)
T|T|T T T T T
T|T|F F F T T
T|F|T F F T T
T|F|F F F T T
F|T|T F F T T
F|T|F F F T T
FIF|T F F T T
F|F|F F F F F
(c) and (d) We have
eV | oAb | YA | VY | YV
T|T T T T T
T|F F F T T
F|T F F T T
F|F F F F F
(e) and (f) We have
x | B |y [ aABVY) | (xAB)V(aAy) | aV(BAY) | (xVB)A(axVY)
T|T|T T T T T
T|T|F T T T T
T|F | T T T T T
T|F|F F F T T
F|T|T F F T T
F|T|F F F F F
F|F|T F F F F
F|F|F F F F F

The second distributive law follows from the first distributive laws and (c).

4.12 Proposition. (a) Let «, 3 and 'y be three sentences. Then we have
((c—= B)A (B —v)) = (x — ) (implication is transitive).
(b) Let @ and 1\ be two sentences. Then we have
(@ = PVIAW = @) & (¢ &)

(c) The relation « is an equivalence relation, that is:
(i) We have ¢ < ¢ for all sentences ¢ (reflexivity).

(ii) Let @ and 1\ be two sentences. Then we have

(@ =) & (b« @) (symmetry).
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(iii) Let «, B and 'y be three sentences. Then we have
(x> BYA(B & 7v)) = (& y) (transitivity).

Proof. We shall use truth tables.

(a) We have
x[Bly|a—=B|B=v | (x—=B)AB—Y) | a—y
T|T|T T T T T
T|T|F T F F F
T F|T F T F T
T|F|F F T F F
F, T | T T T T T
F|T|F T F F T
F|F|T T T T T
F|F|F T T T T

The sentence ((c — B) A (B — ¥)) = («x — ) is true since there is no combination ((x —
BYN(B —>y)) =Tand (x —vy)=F.
(b) We have

¢ | ((¢ =)

IR IR ES
IR RS

SIS

Hm|al4a] ]

TG

(c) (i) and (ii) are obvious. (iii) follows from (a) and (b). |

Historical Note:

Zermelo noticed in [Zermelo 1908b] that a mathematical expression needs to fulfill some formal
requirements. He introduced for that purpose the notion definite:

4. FEine Frage oder Aussage F, tber deren Gultigkeit oder Ungiiltigkeit die Grund-
beziehungen des Bereiches vermoge der Aziome und der allgemeingiltigen logischen
Gesetze ohne Willkiir entscheiden, heiyfSt “definit”.

See [Zermelo 1908b, p. 263], p. 263.)

4. A question or assertion F is said to be definite if the fundamental relations of the
domain, by means of the azioms and the universally valid laws of logic, determine without
arbitrariness whether it holds or not.

See [Zermelo 1967b, p. 201].
The current definition of sentences stems from Thoralf Skolem (1887 - 1963):

[...] - erwdhne ich hier die 5 Grundoperationen der mathematischen Logik. wobei ich die
Bezeichnungen E. Schréders [Schroder 1890] benutze:
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a—
X
—

( Die Kongunktion, [...]
(14) Drie Disjunktion, [...]
(2) Die Negation, [...]

(

(

Y

3y) In jedem Falle Giltigkeit
341) In mindestens einem Falle Gultigkeit
Unter einer definiten Aussage kann man jetzt einen endlichen Ausdruck verstehen, der
von Elementaraussagen der Form a € b oder a =b mat Hilfe der 5 genannten Operatio-
nen aufgebaut 1st.
See [Skolem 1923].
[.-.], I mention the five basic operations of mathematical logic here, using Schrider’s
notation [Schréder 1890]:

(1x) Congunction, [...]

(14) Disjunction, [...]

(2) Negation, [...]

(3x) Unawversal quantification

(3.) Ezistential quantification

By a definite proposition we now mean a finite expression constructed from elementary

propositions of the form a € b or a =b by means of the five operations mentioned.

See [Skolem 1967, pp. 292 - 293)].

5 The Axiom of Specification

The Axiom of Specification:

5.1 Remark. So far we have introduced the axiom of extension (Axiom 3.3) which defines
when two sets are equal and the axiom of existence (Axiom 3.12) which guarantees the
existence of the empty set. Most of the remaining axioms of Zermelo and Fraenkel will

ensure the existence of further sets.

As a next step we would like to construct sets with a certain property, for example, the
set of all even natural numbers. A first approach is to guarantee the existence of a set of
the form

{x | x is an even natural number} ={x |3z € N:x = 2z}

or, more generally, to guarantee the existence of a set of the form

xl o)}

where @ is a sentence containing the variable x.

Unfortunately, this approach yields a contradiction: For, consider the set

A:={x|x¢&x}



5 The Axiom of Specification 23

If the set A itself is an element of the set A, that is, if A € A, then it follows that A ¢ A.
If the set A is no element of the set A, that is, if A ¢ A, then it follows that A € A.

It follows that
(AcA)— (A¢A)and (A¢ZA) = (A€ A).

By Proposition 4.12, we get
(AeA) = (A¢A),
a contradiction.

Hence, one has to be more careful. Zermelo’s solution is to require the existence of sets
of the form

{x e Alo(x)}

for an already existing set A instead of requiring the existence of sets of the form

xl o)}

The resulting axiom of specification still provides a powerful tool to construct subsets of

a given set.

5.2 Axiom. (ZFC-3: Axiom of Specification) Let A be a set, and let ¢ = @(x) be
a sentence containing the free variable x (and possibly more variables).

Then there exists a subset B of the set A consisting of all elements x of the set A such
that the sentence @ = @(x) is true. The set B is denoted by

B:={xe A|opx)}

French / German. Axiom of specification = Axiome de compréhension or Axiome de

séparation = Aussonderungsaxiom.

Elementary Applications of the Axiom of Specification:

5.3 Examples. Let A and B be two sets.
(a) Let X:={x € A | x # x}. Then the set X is the empty set.

(b) Let X :={x € A | x = a}. If the element a is contained in the set A, then we have
X ={a}. If the element a is not contained in the set A, then the set X is the empty set.

(c) Let A be a set containing the two elements a and b. Then we have
{a,b}={x € A|x=aor x =b}.

(d) Let a be an element of the set A, and let X :={x € A | x # a}. Then the set X consists
of all elements of the set A different from the element a. The set X is denoted by A \ {a}.
For more details see Unit Unions and Intersection of Sets [Garden 2020a].

(e) Let X :={x € A | x € B}. The set X consists of all elements contained in the sets A
and B. The set X is denoted by X = A N B. Note that X = {x € B | x € A}. For more
details see Unit Unions and Intersections of Sets [Garden 2020a].
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5.4 Remarks. (a) Note that it is possible that the set B :={x € A | ¢(x)} is the empty
set. An example is the set B :={x € A | x # x} (see Example 5.3).

(b) It is important to note that the axiom of specification (Axiom 5.2) provides a subset of
a giwen set A. The axiom of specification provides the existence of the set {x € A | @(x)}
and not of a set {x | @(x)}.

5.5 Definition. Let A be a set, let ¢ be a sentence, and let x be a free variable of the
sentence .

We say that an element a of the set A fulfills the condition @ = @(x) if the sentence
@(a) is true or, equivalently, if the element a is contained in the set {x € A | @(x)}.

5.6 Remark. One has to be careful with sentences of the form

Let x be an element fulfilling a condition ¢@(x).

By Definition 5.5, such a sentence means

Let x be an element of the set {x € A | p(x)}.

Firstly, one has to specify the set A. Secondly, it may be that the set

xe Al o)}

is empty implying that no such element exists.

The Non-existence of the Set of all Sets:

5.7 Theorem. (a) Let A be an arbitrary set. Then there exists a set B which is no
element of the set A, that is, B ¢ A.

(b) There is no set of all sets, that is, there is no set A such that we have
X € A for all sets X.
Proof. (a) Let A be an arbitrary set, and let
B:={XeA[X¢X}
By the axiom of specification (Axiom 5.2), the set B exists. By definition of the set B, we have

X € Bif and only if X € A and X ¢ X. (1)

Assume that the set B is an element of the set A. We distinguish the following two cases:
Case 1. Suppose that the set B 1s an element of itself, that s, B € B.

It follows from (1) that we have B € A and B ¢ B, a contradiction to the assumption that
B € B.

Case 2. Suppose that the set B is no element of itself, that s, B ¢ B.

Since we assume that the set B is an element of the set A, it follows from (1) that we have
B € B, a contradiction to the assumption that B ¢ B.
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(b) Assume that there exists a set A of all sets. By (a), there exists a set B not contained in
the set A, in contradiction to the assumption that the set A contains all sets, in particular the
set B. O

5.8 Remark. It follows from Theorem 5.7 that the sets of a universe U fulfilling axioms
ZFC-0 to ZFC-3 cannot be gathered into a set of this universe. Since the mathematical
objects of the axiomatics of Zermelo and Fraenkel are only sets, we do not have a notion
for the collection of the sets of a universe.

The axiomatic approach of NBG (von Neumann, Bernays and Godel) extends the math-
ematical objects from sets to sets and classes. In this axiomatic approach, the collection
of the sets of a universe U has its place: It is a class. For more details see Unit The
Aziomatics of von Neumann, Bernays and Gédel [Garden 2020f].

Historical Note:

Georg Cantor defined a set as follows:

Unter einer “Menge” verstehen wir jede Zusammenfassung M von bestimmten wohlun-
terschiedenen mathematischen Objekten m unserer Anschauung oder unseres Denkens
(welche die “Elemente” von M genannt werden) zu einem Ganzen. In Zeichen driicken
wir dies SO aus:

M ={m}.

See [Cantor 1895, p. 481].

By a “set” we understand any collection M, gathered into a whole, of certain well-
distinguished objects m of our perception or our thought (which are called the “elements”
of M). We express this by the following notation:

M ={m}.

(Translation by the author based on [Zermelo 1967b].)

Comparing this definition with Remark 5.1 we can say that Cantor’s definition of a set is very
close to the definition of a set A as

A={x]| o]}

It turned out that this definition of sets results in some contradictions which have also been
called paradoxes or antimonies. One of the most famous antimonies is the paradox of Bertrand
Russell (1872 - 1970) published in the Principles of Mathematics:

Thus we must conclude again that the classes which as ones are not members of them-
selves as many do not form a class.

See [Russell 1903, No. 102, p. 152].

A class is a set in our terminology. This paradox is the antimony that we explained in Remark

5.1.

By the way, in a footnote Zermelo states that he has found this antimony independently from
B. Russell before 1903 and that he had communicated it to David Hilbert:
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Indessen hatte ich selbst diese Antinomie unabhdngig von Russell gefunden und sie schon
vor 1903 u.a. Herrn Prof. Hilbert mitgeteslt.

See [Zermelo 1908a, pp. 118 - 118].

I had , however, discovered this antinomy myself, independently of Russell, and had
communicated it prior to 1903 to Professor Hilbert among others.

See [Zermelo 1967a, p. 191].
The axiom of specification has been introduced by Zermelo as the Aziom der Aussonderung:

Axiom III. Ist die Klassenaussage F(x) definit fiir alle Elemente einer Menge M, so
besitzt M immer eine Untermenge My, welche alle diejenigen Elemente x von M, fir
welche F(x) wahr ist, und nur solche als Elemente enthdlt.

See [Zermelo 1908b, p. 263].

Axiom III. (Aziom of separation.) Whenever the propositional function F(x) ts definite
for all elements of a set M, M possesses a subset My containing as elements precisely
those elements x of M for which F(x) s true.

See [Zermelo 1967b, p. 202].
The condition that the propositional function F(x) is definite means that F(x) is a sentence.

The antinomy of Remark 5.1 becomes the positive existence theorem (Theorem 5.7) stating
that for each set A there exists an element (set) b such that b ¢ A. This conclusion is also
already contained in the foundation paper of Zermelo:

10. Theorem. Jede Menge M besitzt mindestens eine Untermenge My, welche nicht Ele-
ment von M 1st.

See [Zermelo 1908b, p. 264].

10. Theorem. Ewvery set M possesses at least one subset My that is not an element of
M.

See [Zermelo 1967b, p. 203].
6 Notes and References
The first book I read about set theory was Naive Set Theory by Paul R. Halmos (1916 - 2006)

[Halmos 1960]. I still find that it is one of the best introductions into set theory. The units of
the mathematical garden about set theory are very much in its spirit.
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