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1 Introduction

The present unit is part of the walk The Axioms of Zermelo and Fraenkel. It introduces
the natural numbers in the context of the axiomatics of Zermelo and Fraenkel.

The Definition of the Natural Numbers (see Section 2):

What are the characteristic properties of the natural numbers which may serve as a basis for
their formal definition? Peano [Peano 1889] gave in 1889 the following answer:

A set A has the characteristic properties of the set N0 of the natural numbers if it fulfills the
following conditions:

(P1) The set A contains the number 0. The number 0 can be understood as the starting point
for the definition of the natural numbers.

(P2) Starting with the number 0 Peano defines a successor 1 = 0+, then a successor 2 = 1+

and so on. More formally, he requires the existence of a function + : A → A; x 7→ x+ from the
set A into itself. For a natural number n the successor n+ has the meaning n+ = n+ 1.

(P3) We want that n+1 ̸= 0 for all natural numbers n. More formally, we require that x+ ̸= 0

for all elements x of the set A.

(P4) We want that the mapping

+ : A → A, + : x 7→ x+(= x+ 1)

is injective. In other words: If x and y are two elements of the set A such that x+ = y+, then
we have x = y.

Note that Axioms (P1) to (P4) are not sufficient to guarantee that the mapping + : A → A\{0}

is surjective. As an example we consider the set

A := N0 ∪ {(n, 1) | n ∈ N0}

with
n+ := n+ 1 and (n, 1)+ := (n+ 1, 1) for all n ∈ N0.

It fulfills the axioms (P1) to (P4), but the element (0, 1) does not have a predecessor, that is,
there is no element x ∈ A such that x+ = (0, 1). Peano solves this problem with an additional
axiom (P5) as follows:

(P5) If B is a subset of the set A such that

0 ∈ B and x+ ∈ B for all x ∈ B,

then we have B = A.

This axiom has the additional advantage that it provides the basis for the principle of induction.

The axioms (P1) to (P5) are called the axioms of Peano (see Definition 2.1), and we have
shown in Unit Successor Sets and the Axioms of Peano [Garden 2020c] that there exists
exactly one set ω fulfilling the axioms of Peano and additionally the conditions

0 := ∅ and A+ := A ∪ {A} for all A ∈ ω.

See Theorem 2.2. The set ω is called the minimal successor set.

https://www.math-garden.com/walk/zfc-axioms
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The formal definition of the set N0 of the natural numbers is now very easy: We just set

N0 := ω; 0 := ∅ and n+ 1 := n+ := n ∪ {n} for all n ∈ N0 = ω.

See Definitions 2.3 and 2.4.

In Theorem 2.5 we shall see that the mapping N0 → N0\{0} = N, n 7→ n+1 is indeed bijective.

The Principle of Induction and the Recursive Definition of Functions
(see Section 3):

The principle of induction states that if an assertion A0 is true and if we may deduce the
assertion An+1 from the assertion An for all natural numbers n, then the assertion An is true
for all natural numbers n. Originally, this principle has been considered as a general proof
technique. In the context of the axiomatics of Zermelo and Fraenkel it is just a theorem which
is an immediate consequence of Axiom (P5) of Peano (see Theorem 3.1).

Closely related to the principle of induction is the possibility to define a function α : N0 → X

from the set of the natural numbers into a set X recursively. For example, we will define the
exponentiation an recursively by

a0 := 1 and an+1 := an · a.

In other words, we have to construct a function α : N0 → N0 with the properties that

α(0) = 1 and α(n+ 1) = α(n) · a.

Then we may define an := α(n). The formal procedure is as follows: We first define an
auxiliary function f : N0 → N0 by f : n 7→ n · a. Then Theorem 3.4 guarantees the existence
and the uniqueness of a function α : N0 → N0 such that

α(0) = 1 and α(n+ 1) = f
(
α(n)

)
= α(n) · a for all n ∈ N0.

In some cases this procedure has to be extended a little bit. Examples are discussed in Section
7.

The Addition of Natural Numbers (see Section 4):

A crucial property of the natural numbers is the possibility to add natural numbers. The sum
m + n is defined recursively (see Definition 4.2). The basic properties of addition are that
addition is associative (Theorem 4.5), that addition is commutative (Theorem 4.7) and that
the so-called cancellation rules hold (Theorem 4.8).

It is remarkable that the axiomatics of Zermelo and Fraenkel provides a possibility to prove
these properties. Before that, one just had to accept these properties.

One way to define the natural order 0 < 1 < 2 < . . . < n < n+1 < . . . on the set of the natural
numbers is based on the following property of the natural numbers: We will see in Theorem
4.9 that given two natural numbers m and n exactly one of the following cases occurs:

(i) We have n = m.

(ii) There exists a natural number k ̸= 0 such that n = m+ k.

(iii) There exists a natural number k ̸= 0 such that m = n+ k.

Case (ii) means m < n. Case (iii) means n < m. We will explain this in detail in Section 8.
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The Multiplication of Natural Numbers (see Section 5):

A further crucial property of the natural numbers is the possibility to multiply natural num-
bers. The product m · n is defined recursively (see Definition 5.2). The basic properties
of multiplication are that multiplication is associative (Theorem 5.6), that multiplication is
commutative (Theorem 5.8) and that the so-called cancellation rules hold (Theorem 5.10).

The combination of addition and multiplication is expressed by the distributive laws (see
Theorem 5.9).

The Power of Natural Numbers (see Section 6):

Finally, we consider the power of natural numbers. The power mn is defined recursively (see
Definition 6.2). The basic properties of exponentiation are

(km)n = kn ·mn, km+n = km · kn and (km)n = kmn for all k,m,n ∈ N0.

See Theorem 6.5.

Factorial of n and the Fibonacci Numbers (see Section 7):

The factorial n! of a natural number n and the Fibonacci numbers Fn are two further examples
of recursively defined functions. They are defined as follows:

n! := 1 · 2 · . . . · n, or, equivalently, 0! := 1 and (n+ 1)! := n! · (n+ 1) for all n ∈ N0.

F0 := 0, F1 := 1 and Fn+2 := Fn+1 + Fn for all n ∈ N0.

Even though their definition also relies on Theorem 3.4, the process is a little bit more com-
plicated. We will explain this in Examples 7.1 and 7.2.

The Standard Order on the Natural Numbers (see Section 8):

Given two natural numbers m and n we need a method to decide whether m = n, m < n or
m > n with respect to the natural order 0 < 1 < 2 < . . . n < n + 1 < . . .. More precisely, we
need a formal definition for this order. One approach is the observation that if m > n, then
there exists a natural number k ̸= 0 such that m = n + k, for example 5 = 3 + 2. Given two
natural numbers m and n according to Theorem 4.9 exactly one of the following possibilities
occurs:

Equation Meaning
(i) m = n m = n

(ii) n = m+ k, k ̸= 0 m < n

(iii) m = n+ k, k ̸= 0 m > n

Hence, one may define m ⩽ n if there exists a natural number k such that n = m + k (see
Definition 8.1). A first important conclusion is the fact that the pair (N0,⩽) is a totally ordered
set (see Theorem 8.2).

The definition of the natural order on the set of the natural numbers allows us to define the
set

{0, 1, . . . , n} := {x ∈ N0 | 0 ⩽ x ⩽ n} for all n ∈ N0.
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Each natural number is a the the same time a set. We recall that

0 = ∅, 1 = {0}, 2 = {0, 1}, . . .

The above notation allows us to give the following concise description of the set n: We have

0 = ∅ and n+ 1 = {0, 1, . . . , n} for all n ∈ N0.

See Theorem 8.9. The order relation on the set N0 can also be expressed as follows:

m ⩽ n if and only if m ⊆ n for all m,n ∈ N0.

See Theorem 8.5 and Remark 8.6.

The next task is to explore the relation between the (natural) order on the set N0 and the
algebraic operations addition, multiplication and exponentiation. The most important results
are as follows: Let a, b, c, d, m, n and x be natural numbers. Then we have

a ⩽ c and b ⩽ d ⇒ a+ b ⩽ c+ d

x+m ⩽ x+ n ⇒ m ⩽ n

a ⩽ c and b ⩽ d ⇒ ab ⩽ cd

x ̸= 0 and xm ⩽ xn ⇒ m ⩽ n

x ⩽ y ⇒ xn ⩽ yn

x ̸= 0 and m ⩽ n ⇒ xm ⩽ xn

n ̸= 0 and xn ⩽ yn ⇒ x ⩽ y

x ̸= 0, x ̸= 1 and xm ⩽ xn ⇒ m ⩽ n

Generalized Arithmetical Laws (see Section 9):

The additive associative law
(a+ b) + c = a+ (b+ c)

allows us to write a+b+c instead of (a+b)+c or a+(b+c). The sum
∑n

j=1 xj (x1, . . . , xn ∈ N0)
is defined recursively by

1∑
j=1

xj := x1 and
n+1∑
j=1

xj :=
( n∑
j=1

xj
)
+ xn+1.

This means that
n∑

j=1

xj =
((
(x1 + x2) + x3

)
+ . . .+ xn

)
.

The generalized associative law (see Proposition 9.4) allows us to omit all these brackets and
to write

n∑
j=1

xj = x1 + . . .+ xn.

The same is true for the multiplication (see Proposition 9.4). In a similar way the generalized
commutative law (see Proposition 9.6) and the generalized distributive laws (see Proposition
9.8) generalize the commutative law x+y = y+x and the distributive laws x(y+ z) = xy+xz

and (x+ y)z = xz+ yz.
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Dedekind’s Construction of the Natural Numbers (see Section 10):

Richard Dedekind was the first to give an axiomatic definition of the natural numbers (see
[Dedekind 1888]). Peano’s work and the axioms of Peano are based on this work of Dedekind.
In the present unit we did not follow the approach of Dedekind, but introduced the set of the
natural numbers as the minimal successor set defined in Unit Successor Sets and the Axioms
of Peano [Garden 2020c].

In Section 10 we will explain the brilliant approach of Dedekind.

2 The Definition of the Natural Numbers

The definition of the natural numbers will be based on the so-called Peano sets explained in
Unit Successor Sets and the Axioms of Peano [Garden 2020c].

Peano Sets:

2.1 Definition. Let A be a set.

(a) The set A fulfills the axioms of Peano if it fulfills the following conditions:

(P1) The set A contains a distinguished element 0. In particular, the set A is not empty.

(P2) There exists a function + : A → A, x 7→ x+ from the set A into itself.

(P3) We have x+ ̸= 0 for all elements x of the set A.

(P4) If x and y are two elements of the set A such that x+ = y+, then we have x = y,
that is, the function + : A → A is injective.

(P5) If B is a subset of the set A such that

0 ∈ B and x+ ∈ B for all x ∈ B,

then we have B = A.

(b) Let A be a set fulfilling the axioms of Peano. Then the set A is called a Peano set.

2.2 Theorem. There exists exactly one Peano set ω such that

0 := ∅ and A+ := A ∪ {A} for all A ∈ ω.

Proof. In Unit Successor Sets and the Axioms of Peano [Garden 2020c] the minimal
successor set ω is defined, and it is shown that the set ω is a Peano set with the desired
properties. 2

Definition of the Natural Numbers:

2.3 Definition. Let ω be the minimal successor set, that is, the Peano set such that

0 := ∅ and A+ := A ∪ {A} for all A ∈ ω (Theorem 2.2).
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The set ω is called the set of the natural numbers and is denoted by N0.

French / German. Set of the natural numbers = Ensemble des entiers naturels = Menge
der natürlichen Zahlen.

2.4 Definition. (a) We set

0 := ∅ (empty set)

1 := 0+ = 0 ∪ {0} = {0} = {∅}

2 := 1+ = 1 ∪ {1} = {0, 1} =
{
∅, {∅}

}
3 := 2+ = 2 ∪ {2} = {0, 1, 2} =

{
∅, {∅},

{
∅, {∅}

}}
. . .

1437 := 1436+ = 1436 ∪ {1436} = {0, 1, . . . , 1436}

. . .

using the decimal number system without further explanation. The above defined num-
bers are called natural numbers.

(b) For each natural number n, we set n+ 1 := n+.

(c) We denote by N := N0 \ {0} the set of the natural numbers without the number 0.

French / German. Natural number = Entier naturel = Natürliche Zahl.

Note that the number 0 is defined to be a natural number. Some authors do define the number
0 to be natural, others don’t. We follow Bourbaki.

Main Properties of the Natural Numbers:

We summarize the previous results in the following theorem:

2.5 Theorem. (a) The set N0 contains the element 0 := ∅.

(b) For each natural number n, the set n+ 1 := n ∪ {n} is a natural number.

(c) We have n+ 1 ̸= 0 for all natural numbers n.

(d) Let n and m be two natural numbers such that n+ 1 = m+ 1. Then we have n = m.

(e) Let M be a subset of the set N0 such that

0 ∈ M and m+ 1 ∈ M for all m ∈ M.

Then we have M = N0.

(f) Let M be a subset of the set N such that

0 /∈ M,1 ∈ M and m+ 1 ∈ M for all m ∈ M.

Then we have M = N.
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(g) Let n be a natural number. If n ̸= 0, then there exists a natural number k such that
n = k+ 1.

(h) The mapping α : N0 → N, n 7→ n+ 1 is bijective.

Proof. Note that we have N0 = ω and that the set N0 = ω is a Peano set (Theorem 2.2).

(a) The assertion follows from Axiom (P1) of Definition 2.1.

(b) The assertion follows from Axiom (P2) of Definition 2.1.

(c) The assertion follows from Axiom (P3) of Definition 2.1.

(d) The assertion follows from Axiom (P4) of Definition 2.1.

(e) The assertion follows from Axiom (P5) of Definition 2.1.

(f) Let M ′ := M ∪ {0}. Then the set M ′ is a set such that

0 ∈ M ′ and m ′ + 1 ∈ M ′ for all m ′ ∈ M ′.

It follows from (e) that M ′ = N0 implying that M = N.

(g) Let
Z := {0} ∪ {x ∈ N | ∃ y ∈ N such that x = y+ 1}.

By definition of the set Z, it contains the element 0. If x is an element of the set Z, then the
element x+ 1 is obviously contained in the set Z. It follows from Axiom (P5) of Definition 2.1
that Z = N0.

(h) The assertion follows from (c), (d) and (g). 2

For the proof of Proposition 2.8 we need the following property of transitive sets which is
explained in detail in Unit Successor Sets and the Axioms of Peano [Garden 2020c].

2.6 Definition. A set A is called a transitive set if every element of the set A is at the
same time a subset of the set A.

2.7 Proposition. (a) The set N0 of the natural numbers is a transitive set.

(b) Each natural number n is a transitive set.

Proof. It is shown in Unit Successor Sets and the Axioms of Peano [Garden 2020c] that
the minimal successor set ω is a transitive set and that each element of the set ω is a transitive
set. The assertion follows from the fact that we have defined N0 := ω and that the elements
of the set N0 are exactly the natural numbers. 2

2.8 Proposition. Let m and n be two natural numbers such that the set m is a subset
of the set n+ 1. Then we have

m ⊆ n or m = n+ 1.

Proof. We distinguish the following two cases:

Case 1. The number n is an element of the set m.

Since the set m is a transitive set (Proposition 2.7), the number n is also a subset of the set
m. It follows that

n+ 1 = n ∪ {n} ⊆ m ⊆ n+ 1,
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hence m = n+ 1.

Case 2. The number n is no element of the set m.

Since the set m is a subset of the set n + 1 = n ∪ {n}, it follows that the set m is a subset of
the set n. 2

Historical Notes:

Historical notes can be found at the end of Section 10.

3 The Principle of Induction and the Recursive Definition
of Functions

The Principle of Induction:

3.1 Theorem. (Principle of Induction) Suppose that (An)n∈N0
is a family of sen-

tences with the following properties:

(i) n = 0: The sentence A0 is true.

(ii) n 7→ n+ 1: If the sentence An is true, then the sentence An+1 is also true.

Then every sentence of the family (An)n∈N0
is true.

Proof. Let A := {n ∈ N0 | An is true}. It follows from Theorem 2.5 that A = N0. 2

3.2 Definition. The principle stated in Theorem 3.1 is called the principle of induc-
tion. It is denoted by:

n = 0: Show that the sentence A0 is true.

n 7→ n+ 1: Show that the sentence An implies the sentence An+1.

Then one can conclude that the sentence An is true for all natural numbers n.

Note that the principle of induction can also be applied on the set N. In this case, we
consider the cases n = 1 and n 7→ n+ 1.

French / German. Principle of induction = Raisonnement par récurrence = Prinzip der
vollständigen Induktion.

3.3 Remark. Note that the principle of induction is not a principle of logical deduction
but simply a theorem.

Recursive Definition of Functions:

We will base the possibility of the recursive definition of a function α : N0 → X from the set N0

of the natural numbers into a set X (Theorem 3.5) on the corresponding result for the minimal
successor set ω explained in Unit Successor Sets and the Axioms of Peano [Garden 2020c]:
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3.4 Theorem. (Recursive Definition) Let X be a non-empty set, let f : X → X be a
function from the set X into itself, and let a be an element of the set X.

Then there exists exactly one function α : ω → X from the minimal successor set ω into
the set X fulfilling the following conditions:

(i) We have α(∅) = a.

(ii) We have α(A+) = f(α(A)) for each element A of the set ω.

Proof. See Unit Successor Sets and the Axioms of Peano [Garden 2020c]. 2

Since N0 = ω, we may reformulate the recursive definition of functions (Theorem 3.4) for
natural numbers as follows:

3.5 Theorem. (Recursive Definition of a Function) Let X be a non-empty set, let
f : X → X be a function from the set X into itself, and let a be an element of the set X.

Then there exists exactly one function α : N0 → X from the set N0 into the set X fulfilling
the following conditions:

(i) We have α(0) = a.

(ii) We have α(n+ 1) = f(α(n)) for each natural number n.

Proof. The proof follows from the definition N0 := ω and Theorem 3.4. 2

French / German. Recursive definition of a function = Définition d’une fonction par
récurrence = Rekursive Definition einer Funktion.

4 The Addition of Natural Numbers

Definition of the Addition of Natural Numbers:

4.1 Proposition. Let m be a natural number. Then there exists exactly one function

αm : N0 → N0

from the set N0 into itself such that

αm(0) = m and αm(n+ 1) = αm(n) + 1 for all n ∈ N0. (1)

Proof. Let X := N0, and let f : N0 → N0 be the function from the set N0 into itself defined
by

f(x) := x+ 1.

By Theorem 3.5, there exists exactly one function αm : N0 → X = N0 such that

αm(0) = m and αm(n+ 1) = f
(
αm(n)

)
= αm(n) + 1.

2
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4.2 Definition. Let m and n be two natural numbers, and let αm : N0 → N0 be the
function from the set N0 into itself defined in Proposition 4.1. Set

m+ n := αm(n). (2)

The operation
+ : N0 × N0 → N0, (m,n) 7→ m+ n

is called the addition of natural numbers. The element m + n is called the sum of
the natural numbers m and n.

French / German. Addition of natural numbers = Addition des entiers naturels = Addition
natürlicher Zahlen. Sum = Somme = Summe.

4.3 Remark. The definition of the addition of natural numbers in Definition 4.2 relies
on the consideration that

m+ n = m+ 1+ . . .+ 1︸ ︷︷ ︸
n times

.

An alternative way to define the addition of two natural numbers m and n is to choose
two disjoint sets A and B with |A| = m and |B| = n elements and to define

m+ n := |A ·∪ B|.

This approach is explained in Unit Cardinal Arithmetics [Garden 2020d].

Addition is Associative:

4.4 Proposition. (a) We have

m+ 0 = m for all m ∈ N0. (3)

(b) We have
m+ (n+ 1) = (m+ n) + 1 for all m,n ∈ N0. (4)

Proof. (a) We have

m+ 0
(2)
= αm(0)

(1)
= m for all m ∈ N0.

(b) We have

m+ (n+ 1)
(2)
= αm(n+ 1)

(1)
= αm(n) + 1

(2)
= (m+ n) + 1 for all m,n ∈ N0.

2

4.5 Theorem. The addition in the set N0 is associative, that is, we have

(k+m) + n = k+ (m+ n) for all k,m,n ∈ N0. (5)

Proof. Let k, m and n be natural numbers. We proceed by induction on n:

n = 0: We have
(k+m) + 0

(3)
= k+m

(3)
= k+ (m+ 0).
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n 7→ n+ 1: We have

(k+m) + (n+ 1)
(4)
=

(
(k+m) + n

)
+ 1

(Ind.)
=

(
k+ (m+ n)

)
+ 1

(4)
= k+

(
(m+ n) + 1

) (4)
= k+

(
m+ (n+ 1)

)
.

2

Addition is Commutative:

4.6 Proposition. (a) We have

0+ n = n for all n ∈ N0. (6)

(b) We have
(m+ 1) + n = (m+ n) + 1 for all m,n ∈ N0. (7)

Proof. (a) Let n be a natural number. We proceed by induction on n:

n = 0: We have
0+ 0

(3)
= 0.

n 7→ n+ 1:
0+ (n+ 1)

(5)
= (0+ n) + 1

(Ind.)
= n+ 1.

(b) Let m and n be two natural numbers. We proceed by induction on n:

n = 0: We have
(m+ 1) + 0

(3)
= m+ 1

(3)
= (m+ 0) + 1.

n 7→ n+ 1: We have

(m+ 1) + (n+ 1)
(5)
=

(
(m+ 1) + n

)
+ 1

(Ind.)
=

(
(m+ n) + 1

)
+ 1

(5)
=

(
m+ (n+ 1)

)
+ 1.

2

4.7 Theorem. The addition in the set N0 is commutative, that is, we have

m+ n = n+m for all m,n ∈ N0. (8)

Proof. Let m and n be two natural numbers. We proceed by induction on n:

n = 0: We have
m+ 0

(3)
= m

(6)
= 0+m.

n 7→ n+ 1: We have

m+ (n+ 1)
(5)
= (m+ n) + 1

(Ind.)
= (n+m) + 1

(7)
= (n+ 1) +m.

2

The Additive Cancellation Laws:
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4.8 Theorem. Let x, m and n be three natural numbers.

(a) If x+m = x+ n, then we have m = n.

(b) If m+ x = n+ x, then we have m = n.

(c) If m+ n = 0, then we have m = 0 and n = 0.

Proof. (a) We proceed by induction on x:

x = 0: If 0+m = 0+ n, it follows from (6) that m = n.

x 7→ x+ 1: Suppose that (x+ 1) +m = (x+ 1) + n. It follows from (7) that

(x+m) + 1 = (x+ n) + 1.

By Theorem 2.5, it follows that x+m = x+ n. By induction, it follows that m = n.

(b) If m+ x = n+ x, then it follows from (8) that x+m = x+ n. By (a), we get m = n.

(c) Case 1. Assume that m ̸= 0.

By Theorem 2.5, there exists a natural number m ′ such that m = m ′ + 1. It follows that

0 = m+ n = m ′ + 1+ n = (m ′ + n) + 1,

in contradiction to Theorem 2.5.

Case 2. Assume that n ̸= 0.

The assertion follows from Case 1 since we have 0 = m+ n = n+m. 2

4.9 Theorem. Let m and n be two natural numbers. Then exactly one of the following
cases occurs:

(i) We have n = m.

(ii) There exists a natural number k ̸= 0 such that n = m+ k.

(iii) There exists a natural number k ̸= 0 such that m = n+ k.

Proof. Existence: Let m and n be two natural numbers. We proceed by induction on n:

n = 0: If m = 0, then we have m = 0 = n, that is Case (i).

If m ̸= 0, then we have
m = 0+m = n+m,

that is, Case (iii) with k = m.

n 7→ n+ 1: By induction, the numbers n and m fulfill one of the Conditions (i), (ii) or (iii).

Case 1. Suppose that m = n. Then we have n+ 1 = m+ 1, that is, Case (ii) with k = 1.

Case 2. Suppose that there exists a natural number r ̸= 0 such that n = m+ r. It follows that

n+ 1 = m+ (r+ 1),

that is, Case (ii) with k = r+ 1.

Case 3. Suppose that there exists a natural number r ̸= 0 such that m = n+ r.

If r = 1, then we have n+ 1 = m, that is, Case (i).

If r ̸= 1, there exists a natural number k ̸= 0 such that r = k+ 1. It follows that

m = n+ r = n+ k+ 1 = n+ 1+ k, that is, Case (iii).
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Uniqueness: Assume that the cases (i) and (ii) occur simultaneously. Then we have n = m

and n = m+ k for a natural number k ̸= 0. It follows that m = m+ k implying that k = 0, a
contradiction.

Assume that the cases (i) and (iii) occur simultaneously. Then we have n = m and m = n+ k

for a natural number k ̸= 0. It follows that n = n+ k implying that k = 0, a contradiction.

Assume that the cases (ii) and (iii) occur simultaneously. Then we have n = m + r and
m = n+ s for two natural numbers r ̸= 0 and s ̸= 0. It follows that

m = n+ s = (m+ r) + s = m+ (r+ s)

implying that r+ s = 0 implying that r = 0 and s = 0, a contradiction. 2

5 The Multiplication of Natural Numbers

Definition of the Multiplication of Natural Numbers:

5.1 Proposition. Let m be a natural number. Then there exists exactly one function

βm : N0 → N0

from the set N0 into itself such that

βm(0) = 0 and βm(n+ 1) = βm(n) +m for all n ∈ N0. (9)

Proof. Let X := N0 and let f : N0 → N0 be the function from the set N0 into itself defined
by

f(x) := x+m.

By Theorem 3.5, there exists exactly one function βm : N0 → X = N0 such that

βm(0) = m and βm(n+ 1) = f
(
βm(n)

)
= βm(n) +m.

2

5.2 Definition. Let m and n be two natural numbers, and let βm : N0 → N0 be the
function from the set N0 into itself defined in Proposition 5.1. Set

m · n := βm(n). (10)

The operation
· : N0 × N0 → N0, (m,n) 7→ m · n

is called the multiplication of natural numbers. The element m · n is called the
product of the natural numbers m and n. We often write mn instead of m · n.

French / German. Multiplication of natural numbers = Multiplication des entiers naturels
= Multiplikation natürlicher Zahlen. Product = Produit = Produkt.
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5.3 Remark. The definition of the multiplication of natural numbers in Definition 5.2
relies on the consideration that

mn = m+ . . .+m︸ ︷︷ ︸
n times

.

An alternative way to define the multiplication of two natural numbers m and n is to
choose two sets A and B with |A| = m and |B| = n elements and to define

m · n := |A× B|.

This approach is explained in Unit Cardinal Arithmetics [Garden 2020d].

Elementary Properties of the Multiplication:

5.4 Proposition. (a) We have

m · 0 = 0 for all m ∈ N0. (11)

(b) We have
m · 1 = m for all m ∈ N0. (12)

(c) We have
m(n+ 1) = mn+m for all m,n ∈ N0. (13)

Proof. (a) We have

m · 0 (10)
= βm(0)

(9)
= 0 for all m ∈ N0.

(b) We have

m · 1 (10)
= βm(1)

(9)
= βm(0+ 1)

(9)
= βm(0) +m = 0+m = m for all m ∈ N0.

(c) We have

m(n+ 1)
(10)
= βm(n+ 1)

(9)
= βm(n) +m

(10)
= mn+m for all m,n ∈ N0.

2

5.5 Proposition. We have

k(m+ n) = km+ kn for all k,m,n ∈ N0. (14)

Proof. Let k, m and n be three natural numbers. We proceed by induction on n:

n = 0: We have
k(m+ 0) = km = km+ 0

(11)
= km+ k · 0.

n 7→ n+ 1: We have

k
(
m+ (n+ 1)

)
= k

(
(m+ n) + 1

) (13)
= k(m+ n) + k

(Ind.)
= km+ kn+ k

(13)
= km+ k(n+ 1).

2
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Multiplication is Associative:

5.6 Theorem. The multiplication in the set N0 is associative, that is, we have

(km)n = k(mn) for all k,m,n ∈ N0. (15)

Proof. Let k, m and n be three natural numbers. We proceed by induction on n:

n = 0: We have
(km) · 0 (11)

= 0
(11)
= k · 0 (11)

= k(m · 0).

n 7→ n+ 1: We have

(km)(n+ 1)
(13)
= (km)n+ km

(Ind.)
= k(mn) + km

(14)
= k

(
(mn) +m

) (13)
= k

(
m(n+ 1)

)
.

2

5.7 Proposition. (a) We have

0 · n = 0 for all n ∈ N0. (16)

(b) We have
(m+ 1)n = mn+ n for all m,n ∈ N0. (17)

Proof. (a) We proceed by induction on n:

n = 0:
0 · 0 (11)

= 0.

n 7→ n+ 1: Note that we have

0 · 1 (10)
= β0(1) = β0(0+ 1)

(9)
= β0(0) + 0

(9)
= 0+ 0 = 0.

It follows that
0 · (n+ 1)

(13)
= 0 · n+ 0 · 1 (Ind.)

= 0+ 0 = 0.

(b) We proceed by induction on n:

n = 0: We have
(m+ 1) · 0 (11)

= 0 = 0+ 0
(11)
= m · 0+ 0.

n 7→ n+ 1: We have

(m+ 1)(n+ 1)
(14)
= (m+ 1)n+ (m+ 1)

(Ind.)
= mn+ n+m+ 1

= (mn+m) + n+ 1
(13)
= m(n+ 1) + (n+ 1).

2

Multiplication is Commutative:
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5.8 Theorem. The multiplication in the set N0 is commutative, that is, we have

mn = nm for all m,n ∈ N0. (18)

Proof. Let m and be two natural numbers. We proceed by induction on n:

n = 0: We have
m · 0 (11)

= 0
(16)
= 0 ·m.

n 7→ n+ 1: We have

m(n+ 1)
(13)
= mn+m

(Ind.)
= nm+m

(17)
= (n+ 1)m.

2

The Distributive Laws:

5.9 Theorem. The distributive laws hold in the set N0, that is:

(a) We have
k(m+ n) = km+ kn for all k,m,n ∈ N0. (19)

(b) We have
(k+m)n = kn+mn for all k,m,n ∈ N0. (20)

Proof. (a) follows from Proposition 5.5.

(b) Let k, m and n be three natural numbers. Then we have

(k+m)n
(18)
= n(k+m)

(a)
= nk+ nm

(18)
= kn+mn.

2

The Multiplicative Cancellation Laws:

5.10 Theorem. Let x, m and n be three natural numbers.

(a) If mn = 0, then we have m = 0 or n = 0.

(b) If mn = 1, then we have m = 1 and n = 1.

(c) If xm = xn, then we have x = 0 or m = n.

(d) If mx = nx, then we have x = 0 or m = n.

Proof. (a) Let mn = 0, and suppose that n ̸= 0. We have to show that m = 0. Since n ̸= 0,
there exists a natural number n ′ such that n = n ′ + 1. It follows that

0 = mn = m(n ′ + 1) = mn ′ +m.

By Theorem 4.8, we have m = 0 (and mn ′ = 0).

(b) Let mn = 1. We have n ̸= 0 and m ̸= 0 since m · 0 = 0 · n = 0.

Since m ̸= 0 and n ̸= 0, there exist two natural numbers m ′ and n ′ such that m = m ′+ 1 and
n = n ′ + 1. It follows from Theorem 5.9 that

1 = mn = (m ′ + 1)(n ′ + 1) = m ′n ′ + n ′ +m ′ + 1.



6 The Power of Natural Numbers 19

By Theorem 4.8, we have 0 = m ′n ′+m ′+n ′. Again, by Theorem 4.8, we have m ′ = 0, n ′ = 0

(and m ′n ′ = 0). It follows from m ′ = 0 and from n ′ = 0 that

m = m ′ + 1 = 0+ 1 = 1 and n = n ′ + 1 = 0+ 1 = 1.

(c) Let xm = xn, and suppose that x ̸= 0. Assume that m ̸= n. In view of Theorem 4.9, there
exists a natural number 0 ̸= r such that n = m+ r or m = n+ r.

Case 1. Suppose that n = m+ r. Then we have

xm = xn = x(m+ r) = xm+ xr.

It follows from Theorem 4.8 that xr = 0. By (a), we have x = 0 or r = 0. Since x ̸= 0, we have
r = 0, implying that m = n, in contradiction to the assumption that m ̸= n.

Case 2. Suppose that m = n+ r. The proof is analog to the proof of Case 1 using the equation
xn = xm = x(n+ r) = xn+ xr.

(d) Suppose that mx = nx. Then we have xm = xn, and it follows from part (c) that x = 0

or m = n.

6 The Power of Natural Numbers

Definition of the nth power:

6.1 Proposition. Let m be a natural number. Then there exists exactly one function

γm : N0 → N0

from the set N0 into itself such that

γm(0) = 1 and γm(n+ 1) = γm(n) ·m for all n ∈ N0. (21)

Proof. Let X := N0 and let f : N0 → N0 be the function from the set N0 into itself defined
by

f(x) := x ·m.

By Theorem 3.5, there exists exactly one function γm : N0 → X = N0 such that

γm(0) = 1 and γm(n+ 1) = f
(
γm(n)

)
= γm(n) ·m.

2

6.2 Definition. Let m and n be two natural numbers, and let γm : N0 → N0 be the
function from the set N0 into itself defined in Proposition 6.1. Set

mn := γm(n). (22)

The value mn is called the nth power of the number m. The operation (m,n) 7→ mn

is called exponentiation.

French / German. Power of a natural number = Puissance d’un entier naturel = Potenz
einer natürlichen Zahl. Exponentiation = Exponentiation = Potenzieren (= Exponentiation).
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6.3 Remark. The definition of the exponentiation of natural numbers in Definition 6.2
relies on the consideration that

mn = m · . . . ·m︸ ︷︷ ︸
n times

.

An alternative way to define the exponentiation mn for two natural numbers m and n is
to choose two sets A and B with |A| = m and |B| = n elements and to define

mn := |{α : B → A | α is a function from the set B into the set A}|.

This approach is explained in Unit Cardinal Arithmetics [Garden 2020d].

Elementary Properties of the nth power:

6.4 Proposition. (a) We have

m0 = 1 for all m ∈ N0. (23)

(b) We have
m1 = m for all m ∈ N0. (24)

(c) We have
mn+1 = mn ·m for all m,n ∈ N0. (25)

Proof. (a) Let m be a natural number. Then we have m0 (22)
= γm(0)

(21)
= 1.

(b) Let m be a natural number. Then we have

m1 (22)
= γm(1) = γm(0+ 1)

(21)
= γm(0) ·m (21)

= 1 ·m = m.

(c) Let m and n be two natural numbers. Then we have

mn+1 (22)
= γm(n+ 1)

(21)
= γm(n) ·m (22)

= mn ·m.

2

6.5 Theorem. (a) We have

(km)n = kn ·mn for all k,m,n ∈ N0. (26)

(b) We have
km+n = km · kn for all k,m,n ∈ N0. (27)

(c) We have
(km)n = kmn for all k,m,n ∈ N0. (28)

Proof. (a) Let k, m and n be three natural numbers. We proceed by induction on n:

n = 0: We have
(km)0

(23)
= 1 = 1 · 1 (23)

= k0 ·m0.
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n 7→ n+ 1: We have

(km)n+1 (25)
= (km)n · km (Ind.)

= kn ·mn · km = kn · k ·mn ·m (25)
= kn+1 ·mn+1.

(b) Let k, m and n be three natural numbers. We proceed by induction on n:

n = 0: We have
km+0 = km = km · 1 (23)

= km · k0.

n 7→ n+ 1: We have

km+(n+1) = k(m+n)+1 (25)
= km+n · k (Ind.)

= km · kn · k (25)
= km · kn+1.

(c) Let k, m and n be three natural numbers. We proceed by induction on n:

n = 0: We have
(km)0

(23)
= 1

(23)
= k0 = km·0.

n 7→ n+ 1: We have

(km)n+1 (25)
= (km)n · km (Ind.)

= kmn · km (27)
= kmn+m = km(n+1).

2

6.6 Proposition. Let x, m and n be three natural numbers.

(a) If xm = 0, then we have m ̸= 0 and x = 0.

(b) If xm = 1, then we have m = 0 or x = 1.

(c) If xm = xn, then we have x = 0 or x = 1 or m = n.

Proof. (a) Suppose that xm = 0. Assume that m = 0. Then we have xm = 1, a contradiction.
In order to show that x = 0, we proceed by induction on m:

m = 1: Suppose that x1 = 0. Then we have x = x1 = 0.

m 7→ m+ 1: Suppose that xm+1 = 0. By Theorem 6.5, we have

0 = xm+1 = xm · x.

It follows from Theorem 5.10 that x = 0 or xm = 0. If xm = 0, it follows by induction that
x = 0.

(b) Suppose that xm = 1 and m ̸= 0. We have to show that x = 1.

Since m ̸= 0, there exists a natural number m ′ such that m = m ′ + 1. It follows that

1 = xm = xm
′+1 = xm

′ · x.

It follows from Theorem 5.10 that x = 1 (and xm
′
= 1).

(c) Suppose that xm = xn. Assume that m ̸= n. We have to show that x = 0 or x = 1. By
Theorem 4.9, there exists a natural number 0 ̸= r such that m = n+ r or n = m+ r. W.l.o.g.
suppose that n = m+ r. It follows that

xm · 1 = xm = xn = xm+r = xm · xr.

It follows from Theorem 5.10 that xm = 0 or xr = 1.

If xm = 0, it follows from (a) that x = 0.

If xr = 1, then it follows from (b) that r = 0 or x = 1.

If r = 0, then we have m = n, a contradiction. 2
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6.7 Remark. Note that it will follow from Proposition 8.17 that the equation xn = yn

implies that n = 0 or x = y.

7 Factorial of n and the Fibonacci Numbers

For the recursive definition of some functions the process described in Theorem 3.5 has to be
extended. We will present two examples, the factorial n! of a natural number n (see Example
7.1) and the Fibonacci numbers (see Example 7.2).

7.1 Example. The factorial n! of a natural number n is defined as follows:

0! := 1, n! := 1 · 2 · . . . · n for all n ∈ N

or, equivalently, by

0! := 1, (n+ 1)! := n!(n+ 1) for all n ∈ N.

Hence, we have to construct a function β : N0 → N0 with the property that

β(0) = 1 and β(n+ 1) = β(n) · (n+ 1) for all n ∈ N0.

The idea is to construct a function α : N0 → N0 × N0 such that

α(n) = (n!, n+ 1) for all n ∈ N0

and to define the function β : N0 → N0 by β := pr1 ◦ α where

pr1 : N0 × N0 → N0, pr1 : (x, y) 7→ x

denotes the projection on the first component (for more details about projections see Unit
Families and the Axiom of Choice [Garden 2020a]).

For, let f : N0 × N0 → N0 × N0 be the function defined by

f(m,n) := (mn,m+ 1) for all m,n ∈ N0.

By Theorem 3.5, there exists a function α : N0 → N0 × N0 such that

α(0) = (1, 1) and α(n+ 1) = f
(
α(n)

)
for all n ∈ N0.

Let β : N0 → N0 be defined by β := pr1 ◦ α. As indicated above we have to verify that

β(0) = 1 and β(n+ 1) = β(n) · (n+ 1) for all n ∈ N0.

For, we will show by induction on n that

β(0) = 1, α(n) =
(
β(n), n+ 1

)
and β(n+ 1) = β(n) · (n+ 1) for all n ∈ N0.

n = 0: We have α(0) = (1, 1) implying that β(0) = pr1
(
α(0)

)
= 1. In particular, we have

α(0) = (1, 1) =
(
β(0), 0+ 1

)
.
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n 7→ n+ 1: By induction, we have

α(n+ 1) = f
(
α(n)

)
= f

(
β(n), n+ 1

)
=

(
β(n)(n+ 1), n+ 2

)
implying that β(n+ 1) = pr1

(
α(n+ 1)

)
= β(n)(n+ 1). In particular, we have

α(n+ 1) =
(
β(n)(n+ 1), n+ 2

)
=

(
β(n+ 1), (n+ 1) + 1

)
.

The uniqueness of the function β : N0 → N0 follows by induction.

7.2 Example. The Fibonacci numbers
(
Fn

)
n∈N0

are defined as follows:

F0 := 1, F1 := 1, Fn+2 := Fn + Fn+1 for all n ∈ N0.

Hence, we have to construct a function β : N0 → N0 with the property that

β(0) = 1, β(1) = 1 and β(n+ 2) = β(n+ 1) + β(n) for all n ∈ N0.

The idea is to construct a function α : N0 → N0 × N0 such that

α(0) = (1, 0) and α(n+ 1) = (Fn+1, Fn) for all n ∈ N0

and to define the function β : N0 → N0 by β := pr1 ◦ α where

pr1 : N0 × N0 → N0, pr1 : (x, y) 7→ x

denotes the projection on the first component as in Example 7.1.

For, let f : N0 × N0 → N0 × N0 be the function defined by

f(m,n) := (m+ n,m) for all m,n ∈ N0.

By Theorem 3.5, there exists a function α : N0 → N0 × N0 such that

α(0) = (1, 0) and α(n+ 1) = f
(
α(n)

)
for all n ∈ N0.

Let β : N0 → N0 be defined by β := pr1 ◦ α. As indicated above we have to verify that

β(0) = 1, β(1) = 1 and β(n+ 2) = β(n+ 1) + β(n) for all n ∈ N0.

For, we will show by induction on n that α(0) = (1, 0), α(1) = (1, 1), β(0) = 1, β(1) = 1

and

α(n+ 2) =
(
β(n+ 2), β(n+ 1)

)
and

β(n+ 2) = β(n+ 1) + β(n) for all n ∈ N0.

n = 0: We have α(0) = (1, 0) implying that β(0) = pr1
(
α(0)

)
= 1.

n = 1: We have
α(1) = f

(
α(0)

)
= f(1, 0) = (1, 1)
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implying that β(1) = pr1
(
α(1)

)
= 1. In particular, we have

α(1) = (1, 1) =
(
β(1), β(0)

)
.

n+ 1 7→ n+ 2: By induction, we have

α(n+ 2) = f
(
α(n+ 1)

)
= f

(
β(n+ 1), β(n)

)
=

(
β(n+ 1) + β(n), β(n+ 1)

)
implying that β(n+ 2) = pr1

(
α(n+ 2)

)
= β(n+ 1) + β(n). In particular, we have

α(n+ 2) =
(
β(n+ 1) + β(n), β(n+ 1)

)
=

(
β(n+ 2), β(n+ 1)

)
.

The uniqueness of the function β : N0 → N0 follows by induction.

8 The Standard Order on the Natural Numbers

Definition of the Standard Order on the Set N0:

8.1 Definition. Let m and n be two natural numbers. We set m ⩽ n if and only if there
exists a natural number r such that

n = m+ r.

The order ⩽ is called the standard order on the set of the natural numbers.

French / German. Standard order on the natural numbers = Ordre naturel sur les nombres
entiers = Standardordnung auf den natürlichen Zahlen.

8.2 Theorem. The pair (N0,⩽) is a totally ordered set with respect to the standard
order on the natural numbers (Definition 8.1).

Proof. Since
n = n+ 0 for all n ∈ N0,

we have n ⩽ n for all natural numbers n.

Let m and n be two natural numbers such that m ⩽ n and n ⩽ m. Then there exist two
natural numbers r and s such that

n = m+ r and m = n+ s.

It follows that n = m+ r = n+ s+ r implying that r = 0 and s = 0. Hence, we have m = n.

Let k, m and n be three natural numbers such that k ⩽ m and m ⩽ n. Then there exist two
natural numbers r and s such that

m = k+ r and n = m+ s.

It follows that n = m+ s = k+ r+ s implying that k ⩽ n.

Finally, let m and n be two natural numbers. Then it follows from Theorem 4.9 that m ⩽ n

or n ⩽ m. 2
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8.3 Proposition. Let m and n be two natural numbers. Then the following two condi-
tions are equivalent:

(i) We have m < n.

(ii) There exists a natural number r ̸= 0 such that n = m+ r.

Proof. (i) ⇒ (ii): Suppose that m < n. Then it follows that m ⩽ n implying that there
exists a natural number r such that n = m+r. Assuming r = 0, we get m = n, a contradiction.

(ii) ⇒ (i): Suppose that n = m + r for a natural number r ̸= 0. Then it follows that m ⩽ n.
Assuming that m = n, we obtain r = 0, a contradiction. 2

Elementary Properties of the Ordered Set N0:

8.4 Proposition. Let m and n be two natural numbers.

(a) If n ̸= 0, then we have 0 < n.

(b) We have n < n+ 1.

(c) We have m ⩽ n if and only if m+ 1 ⩽ n+ 1.

(d) We have m < n if and only if m+ 1 < n+ 1.

(e) If m < n, then we have m+ 1 ⩽ n.

(f) If m < n+ 1, then we have m ⩽ n.

(g) If m < n ⩽ m+ 1, then we have n = m+ 1.

Proof. Let m and n be two natural numbers.

(a) Suppose that n ̸= 0. By Proposition 8.3, it follows from n = 0+ n and n ̸= 0 that 0 < n.

(b) By Proposition 8.3, it follows from n+ 1 = n+ 1 and 1 ̸= 0 that n < n+ 1.

(c) Suppose that m ⩽ n. Then there exists a natural number r such that n = m+ r. It follows
that n+ 1 = m+ 1+ r, hence m+ 1 ⩽ n+ 1.

Suppose that m+1 ⩽ n+1. Then there exists a natural number r such that n+1 = m+1+r.
It follows that n = m+ r, hence m ⩽ n.

(d) Suppose that m < n. Then there exists a natural number r ≠ 0 such that n = m + r. It
follows that n+ 1 = m+ 1+ r, hence m+ 1 < n+ 1.

Suppose that m+1 < n+1. Then there exists a natural number r ̸= 0 such that n+1 = m+1+r.
It follows that n = m+ r, hence m < n.

(e) Suppose that m < n. Then there exists a natural number r ̸= 0 such that n = m+r. Since
r ̸= 0, there exists a natural number r ′ such that r = r ′ + 1. It follows that

n = m+ r = m+ r ′ + 1 = m+ 1+ r ′

implying that m+ 1 ⩽ n.

(f) Suppose that m < n+1. Then there exists a natural number r ̸= 0 such that n+1 = m+r.
Since r ̸= 0, there exists a natural number r ′ such that r = r ′ + 1. It follows that

n+ 1 = m+ r = m+ r ′ + 1

implying that n = m+ r ′. It follows that m ⩽ n.
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(g) Suppose that m < n ⩽ m + 1. It follows from (e) that m + 1 ⩽ n implying that
m+ 1 ⩽ n ⩽ m+ 1. It follows that m+ 1 = n. 2

8.5 Theorem. Let m and n be two natural numbers.

(a) We have m ⊆ n if and only if m ⩽ n.

(b) We have m ⊂ n if and only if m < n.

Proof. (a) Step 1. Suppose that m ⊆ n. Then we have m ⩽ n:

We have to show that there exists a natural number k such that n = m+ k.

We proceed by induction on n:

n = 0: It follows from
m ⊆ n = 0 = ∅

that m = ∅ = 0. We get
n = m+ k with k = 0.

n 7→ n+ 1: Suppose that m ⊆ n+ 1. By Proposition 2.8, we have

m ⊆ n or m = n+ 1.

If m ⊆ n, then it follows by induction that m ⩽ n ⩽ n + 1. If m = n + 1, then obviously,
m ⩽ n+ 1.

Step 2. Suppose that m ⩽ n. Then we have m ⊆ n:

We proceed by induction on n:

n = 0: It follows from m ⩽ n that m = 0. Hence, we have m = 0 = n implying that m ⊆ n.

n 7→ n+ 1: Suppose that we have m ⩽ n+ 1. Then there exists a natural number k such that
n+ 1 = m+ k.

Case 1. If k = 0, then we have n+ 1 = m implying that m ⊆ n+ 1.

Case 2. If k ̸= 0, then there exists a natural number r such that k = r+ 1. It follows that

n+ 1 = m+ k = m+ r+ 1.

implying that n = m+r, that is, m ⩽ n. By induction, it follows that m ⊆ n, Since n ⊆ n+1,
it follows that m ⊆ n+ 1.

(b) follows from (a) 2

8.6 Remark. Theorem 8.5 can also be used for an alternative definition of the standard
order on the natural numbers as follows: For two natural numbers m and n, we define

m ⩽ n if and only if m ⊆ n.

8.7 Theorem. Let n be a natural number. Then we have n = {x ∈ N0 | x < n}.

Proof. We proceed by induction on n:

n = 0: We have 0 = ∅ = {x ∈ N0 | x < 0}.

n 7→ n+ 1: Suppose that n = {x ∈ N0 | x < n} for some natural number n.
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Step 1. We have {x ∈ N0 | x < n} ∪ {n} ⊆ {x ∈ N0 | x < n+ 1}:

If x < n, it follows from n < n+ 1 (Proposition 8.4) that x < n+ 1.

If x = n, it follows from n < n+ 1 (Proposition 8.4) that x < n+ 1.

Step 2. We have {x ∈ N0 | x < n+ 1} ⊆ {x ∈ N0 | x < n} ∪ {n}:

If x < n+ 1, then it follows from Proposition 8.4 that we have x ⩽ n. It follows that x < n or
x = n.

Step 3. We have n+ 1 = {x ∈ N0 | x < n+ 1}:

By Step 1 and 2 and by induction, we have

n+ 1 = n ∪ {n} = {x ∈ N0 | x < n} ∪ {n} = {x ∈ N0 | x < n+ 1}.

2

8.8 Definition. Let m and n be two natural numbers. We set

{m,m+ 1, . . . , n} :=

{
{x ∈ N0 | m ⩽ x and x ⩽ n} if m ⩽ n and
∅ if m > n.

Note that {n,n+ 1, . . . , n} = {n}.

8.9 Theorem. Let n be a natural number. Then we have

n+ 1 = {0, 1, . . . , n}.

Proof. The assertion follows from Theorem 8.7. 2

8.10 Theorem. Let A be a subset of the set N0. If the set A is non-empty, then it has
a minimal element.

Proof. Suppose that the set A is non-empty. If A contains the element 0, then 0 is the
minimal element of the set A. So we may assume that the element 0 is not contained in the
set A.

We claim that there exists an element k of the set A such that

{0, 1, . . . , k} ∩A = ∅ and k+ 1 ∈ A :

Assume on the contrary that no such element k exists. Let

B := {x ∈ N0 | {0, 1, . . . , x} ∩A = ∅}.

It follows that
0 ∈ B and x+ 1 ∈ B whenever x ∈ B.

Hence, we have B = N0 implying that

A ∩ N0 = A ∩ B = ∅,

a contradiction. It follows that the element k+ 1 is the minimal element of the set A. 2

Addition and Order:
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8.11 Proposition. Let a, b, c and d be four natural numbers.

(a) If a ⩽ c and b ⩽ d, then we have a+ b ⩽ c+ d.

(b) If a < c and b ⩽ d, then we have a+ b < c+ d.

(c) If a ⩽ c and b < d, then we have a+ b < c+ d.

Proof. (a) It follows from a ⩽ c, b ⩽ d and Theorem 8.5 that there exist two natural
numbers r and s such that c = a+ r and d = b+ s implying that

c+ d = a+ r+ b+ s = (a+ b) + (r+ s).

By Theorem 8.5, we get a+ b ⩽ c+ d.

(b) It follows from a < c, b ⩽ d and Theorem 8.5 that there exists a natural number r ̸= 0

and a natural number s such that c = a+ r and d = b+ s implying that

c+ d = a+ r+ b+ s = (a+ b) + (r+ s).

Since r+ s ̸= 0, it follows from Theorem 8.5 that a+ b < c+ d.

(c) It follows from (b) that

a+ b = b+ a < d+ c = c+ d.

2

8.12 Proposition. Let x, m and n be three natural numbers.

(a) If x+m ⩽ x+ n, then we have m ⩽ n.

(b) If x+m < x+ n, then we have m < n.

Proof. (a) It follows from x+m ⩽ x+n and Theorem 8.5 that there exists a natural number
r such that

x+m = x+ n+ r.

It follows from Theorem 4.8 that m = n+ r implying that m ⩽ n.

(b) It follows from (a) that m ⩽ n. Assuming m = n we get x+m = x+n, a contradiction. 2

Multiplication and Order:

8.13 Proposition. Let a, b, c and d be four natural numbers.

(a) If a ⩽ c and b ⩽ d, then we have ab ⩽ cd.

(b) If a < c, b ⩽ d and d ̸= 0, then we have ab < cd.

(c) If a ⩽ c, b < d and c ̸= 0, then we have ab < cd.

Proof. (a) It follows from a ⩽ c, b ⩽ d and Theorem 8.5 that there exist two natural
numbers r and s such that c = a+ r and d = b+ s implying that

cd = (a+ r)(b+ s) = ab+ (as+ rb+ rs).

By Theorem 8.5, we get ab ⩽ cd.
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(b) It follows from a < c, b ⩽ d and Theorem 8.5 that there exists a natural number r ̸= 0

and a natural number s such that c = a+ r and d = b+ s implying that

cd = (a+ r)(b+ s) = ab+ as+ r(b+ s) = ab+ (as+ rd).

Since r ̸= 0 and d ̸= 0, we have rd ̸= 0 implying that as + rd ̸= 0. It follows from Theorem
8.5 that ab < cd.

(c) follows from (b). 2

8.14 Proposition. Let x, m and n be three natural numbers.

(a) If x ̸= 0 and xm ⩽ xn, then we have m ⩽ n.

(b) If x ̸= 0 and xm < xn, then we have m < n.

Proof. (a) Assume that n < m. It follows from Theorem 8.5 that there exists a natural
number r ̸= 0 such that m = n+ r implying that

xm = xn+ xr.

Since x ̸= 0 and r ̸= 0, we have xr ̸= 0. It follows from Theorem 8.5 that xn < xm, a
contradiction.

(b) It follows from (a) that m ⩽ n. Assume that m = n. Then we have xm = xn, a
contradiction. 2

Exponentiation and Order:

8.15 Proposition. Let x, y, m and n be four natural numbers.

(a) If x ⩽ y, then we have xn ⩽ yn.

(b) If n ̸= 0 and x < y, then we have xn < yn.

(c) If x ̸= 0 and m ⩽ n, then we have xm ⩽ xn.

(d) If x ̸= 0, x ̸= 1 and m < n, then we have xm < xn.

(e) If x ̸= 0, x ⩽ y and m ⩽ n, then we have xm ⩽ yn.

(f) If x ̸= 0 x ̸= 1, x < y and m ⩽ n, then we have xm < yn.

(g) If x ̸= 0 x ̸= 1, x ⩽ y and m < n, then we have xm < yn.

Proof. (a) Let x ⩽ y. We proceed by induction on n:

n = 0: We have x0 = 1 ⩽ 1 = y0.

n 7→ n+ 1: By induction, we have xn ⩽ yn. It follows from Proposition 8.13 that

xn+1 = xnx ⩽ yny = yn+1.

(b) Let n ̸= 0 and x < y. We proceed by induction on n:

n = 1: We have x1 = x < y = y1.

n 7→ n+ 1: By induction, we have xn < yn. It follows from Proposition 8.13 that

xn+1 = xnx < yny = yn+1.
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(c) Let x ̸= 0 and m ⩽ n. Since m ⩽ n, there exists a natural number r such that n = m+ r.
Since x ̸= 0, we have 1 ⩽ xr. It follows from Proposition 8.13 that

xm ⩽ xmxr = xm+r = xn.

(d) Let x ̸= 0, x ̸= 1 and m < n. Since m < n, there exists a natural number r ̸= 0 such that
n = m+ r. Since x > 1 and r ̸= 0, we have 1 < xr. It follows from Proposition 8.13 that

xm < xmxr = xm+r = xn.

(e) Let x ̸= 0, x ⩽ y and m ⩽ n. We have

xm
(a)

⩽ ym
(c)

⩽ yn.

(f) Let x ̸= 0 x ̸= 1, x < y and m ⩽ n. We have xm ⩽ xn < yn, hence xm < yn.

(g) x ̸= 0 x ̸= 1, x ⩽ y and m < n. We have xm ⩽ ym < yn, hence xm < yn. 2

8.16 Proposition. Let x, y, m and n be four natural numbers.

(a) If n ̸= 0 and xn ⩽ yn, then we have x ⩽ y.

(b) If xn < yn, then we have x < y.

(c) If x ̸= 0, x ̸= 1 and xm ⩽ xn, then we have m ⩽ n.

(d) If x ̸= 0 and xm < xn, then we have m < n.

Proof. (a) Let n ̸= 0 and xn ⩽ yn. Assume that y < x. By Proposition 8.15, we have
yn < xn, a contradiction.

(b) Let xn < yn, Note that n ̸= 0 since we have xn < yn, but x0 = 1 = y0. It follows from
(a) that x ⩽ y. Assuming x = y, we obtain xn = yn, a contradiction.

(c) Let x ̸= 0, x ̸= 1 and xm ⩽ xn. Assume that n < m. By Proposition 8.15, we have
xn < xm, a contradiction.

(d) Let x ̸= 0 and xm < xn. Note that x ̸= 1 since we have xm < xn, but 1m = 1 = 1n. It
follows from (c) that m ⩽ n. Assume that m = n. Then we have xm = xn, a contradiction. 2

8.17 Proposition. Let x, y, and n be three natural numbers.

If xn = yn, then we have n = 0 or x = y.

Proof. Let xn = yn and suppose that n ̸= 0. It follows from xn = yn that we have

xn ⩽ yn and yn ⩽ xn.

By Proposition 8.16, we get x ⩽ y and y ⩽ x implying that x = y. 2

Isomorphism between N0 and N:

We recall the definition of an isomorphism of ordered sets introduced in Unit Ordered Sets
and the Lemma of Zorn [Garden 2020b]:
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8.18 Definition. Let A = (A,⩽A) and B = (B,⩽B) be two ordered sets. A bijective
mapping α : A → B is called an isomorphism from the ordered set A onto the
ordered set B if we have

x ⩽A y if and only if α(x) ⩽B α(y) for all x, y ∈ A.

8.19 Proposition. The function α : N0 → N, α : n 7→ n+ 1 is an isomorphism form the
ordered set (N0,⩽) onto the ordered set (N,⩽). In particular, the sets (N0,⩽) and (N,⩽)

are isomorphic.

Proof. By Theorem 2.5, the function α : N0 → N is bijective. By Proposition 8.4, we have

n ⩽ m ⇔ n+ 1 ⩽ m+ 1 ⇔ α(n) ⩽ α(m).

2

9 Generalized Arithmetic Laws

Sums and Products:

9.1 Definition. Let m and n be two natural numbers, let I := {m,m+ 1, . . . , n} (Defini-
tion 8.8), and let xj be a natural number for each element j of the set I.

(a) If m > n, we set
n∑

j=m

xj := 0 (empty sum).

(b) If m = n, we set
m∑

j=m

xj := xm.

(c) If m < n, we have n > 0, and there exists a natural number n ′ such that n = n ′ + 1.
It follows that m ⩽ n ′. We set

n∑
j=m

xj :=

 n′∑
j=m

xj

+ xn (recursive definition).

(d) We set

xk + xk+1 + . . .+ xn :=

n∑
j=k

xj.

9.2 Definition. Let m and n be two natural numbers, let I := {m,m+ 1, . . . , n} (Defini-
tion 8.8), and let xj be a natural number for each element j of the set I.

(a) If m > n, we set
n∏

j=m

xj := 1 (empty product).
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(b) If m = n, we set
m∏

j=m

xj := xm.

(c) If m < n, we have n > 0, and there exists a natural number n ′ such that n = n ′ + 1.
It follows that m ⩽ n ′. We set

n∏
j=m

xj :=

 n′∏
j=m

xj

 · xn (recursive definition).

(d) We set

xk · xk+1 · . . . · xn :=

n∏
j=k

xj.

Generalized Associative Law:

9.3 Proposition. Let k, m and n be three natural numbers such that k ⩽ m < n, and
let

xk, xk+1, . . . , xm, xm+1, . . . , xn

be a sequence of natural numbers.

(a) We have ( m∑
j=k

xj

)
+
( n∑

j=m+1

xj

)
=

n∑
j=k

xj.

(b) We have ( m∏
j=k

xj

)
·
( n∏

j=m+1

xj

)
=

n∏
j=k

xj.

Proof. (a) Since we have m < n, there exists a natural number r ⩾ 1 such that n = m + r.
We have to show that ( m∑

j=k

xj

)
+
( r∑

j=1

xm+j

)
=

n∑
j=k

xj :

We proceed by induction on r:

r = 1: Note that n = m+ r = m+ 1. By Definition 9.1, we have

m+1∑
j=k

xj =
( m∑

j=k

xj

)
+ xm+1.
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r 7→ r+ 1: We have

( m∑
j=k

xj

)
+
( r+1∑

j=1

xm+j

)

=
( m∑

j=k

xj

)
+

( r∑
j=1

xm+j

)
+ xm+r+1

 (Definition 9.1)

=

( m∑
j=k

xj

)
+
( r∑

j=1

xm+j

)+ xm+r+1 (associative law)

=
( n∑

j=k

xj

)
+ xn+1 (induction and n = m+ r)

=

n+1∑
j=k

xj (Definition 9.1).

(b) The proof of (b) is identical with the proof of (a). We only have to replace the signs + and∑
by the signs · and

∏
and to use Definition 9.2 instead of Definition 9.1. 2

9.4 Proposition. (Generalized Associative Law) Let k and n be two natural num-
bers with k < n, and let xk+1, . . . , xn be a sequence of natural numbers. In addition, let
r ⩾ 1 be a natural number, and let n0, n1, . . . , nr be a sequence of natural numbers such
that

k = n0 < n1 < . . . < nr = n.

Let r ′ be the natural number such that r = r ′ + 1.

(a) We have
r′∑
i=0

( ni+1∑
j=ni+1

xj

)
=

n∑
j=k+1

xj.

(b) We have
r′∏
i=0

( ni+1∏
j=ni+1

xj

)
=

n∏
j=k+1

xj.

Proof. (a) We proceed by induction on r:

r = 1: Note that we have r ′ = 0, k = n0 and n = nr = n1. It follows that

r′∑
i=0

( ni+1∑
j=ni+1

xj

)
=

0∑
i=0

( ni+1∑
j=ni+1

xj

)
=

n1∑
j=n0+1

xj =

n∑
j=k+1

xj.

r 7→ r+1: Let k and n be two natural numbers with k < n, and let xk+1, . . . , xn be a sequence
of natural numbers. Let r ⩾ 1 be a natural number, and let n0, n1, . . . , nr, nr+1 be natural
numbers such that

k = n0 < n1 < . . . nr < nr+1 = n.

We have to show that
r∑

i=0

( ni+1∑
j=ni+1

xj

)
=

n∑
j=k+1

xj :
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Note that we have r = r ′ + 1, k = n0 and n = nr+1. It follows that

r∑
i=0

( ni+1∑
j=ni+1

xj

)

=

r′+1∑
i=0

( ni+1∑
j=ni+1

xj

)
=

 r′∑
i=0

( ni+1∑
j=ni+1

xj

)+
( nr+1∑

j=nr+1

xj

)
(Definition 9.1)

=
( nr∑

j=k+1

xj

)
+
( nr+1∑

j=nr+1

xj

)
(induction and r = r ′ + 1)

=

nr+1∑
j=k+1

xj =

n∑
j=k+1

xj (Proposition 9.3 and n = nr+1).

(b) The proof of (b) is identical with the proof of (a). We just have to replace the signs + and∑
by the signs · and

∏
. 2

Generalized Commutative Law:

9.5 Proposition. Let y be a natural number, and let x1, . . . , xn be a sequence of natural
numbers for some natural number n ⩾ 1.

(a) We have
y+ x1 + . . .+ xn = x1 + . . .+ xn + y.

(b) We have
y · x1 · . . . · xn = x1 · . . . · xn · y.

Proof. (a) We proceed by induction on n:

n = 1: By Theorem 4.7, we have y+ x1 = x1 + y.

n 7→ n+ 1: Let x1, . . . , xn+1 be a sequence of natural numbers. Then we have

y+ x1 + . . . xn+1 = (y+ x1 + . . .+ xn) + xn+1

= (x1 + . . .+ xn + y) + xn+1 (induction)

= (x1 + . . .+ xn) + (y+ xn+1) (Proposition 9.4)

= (x1 + . . .+ xn) + (xn+1 + y) (Theorem 4.7)

= x1 + . . .+ xn + xn+1 + y.

(b) The proof of (b) is identical with the proof of (a). We just have to replace the sign + by
the sign · and Theorem 4.7 by Theorem 5.8. 2

9.6 Proposition. (Generalized Commutative Law) Let x1, . . . , xn be a sequence of
natural numbers for some natural number n ⩾ 1, and let

α : {1, . . . , n} → {1, . . . , n}

be a bijective mapping from the set {1, . . . , n} onto itself.

(a) We have
xα(1) + . . .+ xα(n) = x1 + . . .+ xn.
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(b) We have
xα(1) · . . . · xα(n) = x1 · . . . · xn.

(c) Let y1, . . . , yn be a sequence of natural numbers. Then we have

n∑
i=1

(
xi + yi

)
=

( n∑
i=1

xi

)
+
( n∑

i=1

yi

)
and

n∏
i=1

(
xiyi

)
=

( n∏
i=1

xi

)
·
( n∏

i=1

yi

)

Proof. (a) We proceed by induction on n:

n = 1: For n = 1 we have α(1) = 1 implying that xα(1) = x1.

n 7→ n+ 1: Let x1, . . . , xn+1 be a sequence of natural numbers, and let

α : {1, . . . , n+ 1} → {1, . . . , n+ 1}

be a bijective mapping from the set {1, . . . , n + 1} onto itself. Then there exists an element k

of the set {1, . . . , n+ 1} such that α(k) = n+ 1.

Define the mapping β : {1, . . . , n} → {1, . . . , n} by

β(j) :=

{
α(j) if 1 ⩽ j < k

α(j+ 1) if k ⩽ j ⩽ n.

1
...
k
...
n

1
...

α

k

k+ 1
...

n+ 1

1

...

n

n+ 1

β

It is easy to verify that the mapping β : {1, . . . , n} → {1, . . . , n} is bijective.

If k = 1, then we have

xα(1) + . . .+ xα(n+1) = xα(k) + xα(2) + . . .+ xα(n+1) (k = 1)

= xα(2) + . . .+ xα(n+1) + xα(k) (Proposition 9.5)

= xβ(1) + . . .+ xβ(n) + xn+1 (Definition of β and α(k) = n+ 1)

= x1 + . . .+ xn + xn+1 (induction).

If k > 1, let k ′ be the natural number such that k = k ′ + 1. Then we have

xα(1) + . . .+ xα(n+1)

= xα(1) + . . .+ xα(k′) + xα(k) + xα(k+1) . . .+ xα(n+1)

= xα(1) + . . .+ xα(k′) + xα(k+1) . . .+ xα(n+1) + xα(k) (Proposition 9.5)

= xβ(1) + . . .+ xβ(k′) + xβ(k) + . . .+ xβ(n) + xn+1 (Definition of β and α(k) = n+ 1)

= x1 + . . .+ xn + xn+1 (induction).

(b) follows as in (a).

(c) follows from (a) and (b). 2
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Generalized Distributive Law:

9.7 Proposition. Let x be a natural number, and let y1, . . . , yn be a sequence of natural
numbers for some natural number n ⩾ 1. Then we have

n∑
j=1

(xyj) = x
( n∑
j=1

yj

)
=

( n∑
j=1

yj

)
x.

Proof. We will prove the first equation by induction on n.

n = 1: We have
n∑

j=1

(xyj) =

1∑
j=1

(xyj) = xy1 = x
( 1∑
j=1

yj

)
= x

( n∑
j=1

yj

)
.

n 7→ n+ 1: Let y1, . . . , yn, yn+1 be a sequence of natural numbers. Then we have

n+1∑
j=1

(xyj) =

n∑
j=1

(xyj) + xyn+1 (Definition 9.1)

= x
( n∑
j=1

yj

)
+ xyn+1 (induction)

= x

( n∑
j=1

yj

)
+ yn+1

 (Theorem 5.9)

= x
(n+1∑

j=1

yj

)
(Definition 9.1).

The second equation follows from the first equation and the fact that the multiplication in N0

is commutative. 2

9.8 Proposition. (Generalized Distributive Law) Let x1, . . . , xm and y1, . . . , yn be
two sequences of natural numbers for some natural numbers m ⩾ 1 and n ⩾ 1. Then we
have (

x1 + . . .+ xm
)(
y1 + . . .+ yn

)
=

m∑
i=1

n∑
j=1

xiyj.

Proof. We proceed by induction on n:

n = 1: We have

(
x1 + . . .+ xm

)
y1 =

( m∑
i=1

xi

)
y1 (Definition 9.1)

=

m∑
i=1

(
xiy1

)
(Proposition 9.7)

=

m∑
i=1

(
xi

( 1∑
j=1

yj

))
(Definition 9.1)

=

m∑
i=1

( 1∑
j=1

(
xiyj

))
(Proposition 9.7)
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n 7→ n+ 1: Let y1, . . . , yn+1 be a sequence of natural numbers. Then we have(
x1 + . . .+ xm

)(
y1 + . . .+ yn + yn+1

)
=

(
x1 + . . .+ xm

)(
y1 + . . .+ yn

)
+
(
x1 + . . .+ xm

)
yn+1 (Theorem 5.9)

=

 m∑
i=1

( n∑
j=1

xiyj

)+
( m∑

i=1

xi

)
yn+1 (induction)

=

m∑
i=1

( n∑
j=1

xiyj + xiyn+1

)
(Proposition 9.6)

=

m∑
i=1

(
xi

( n∑
j=1

yj + yn+1

))
(Proposition 9.7 and Theorem 5.9)

=

m∑
i=1

xi

(n+1∑
j=1

yj

)
(Definition 9.1)

=

m∑
i=1

n+1∑
j=1

xiyj (Proposition 9.7)

2

10 Dedekind’s Construction of the Natural Numbers

Richard Dedekind published in 1872 the paper Stetigkeit und irrationale Zahlen (Continuity
and irrational numbers) [Dedekind 1872] where he gave an axiomatic foundation of the real
numbers based on what is today called the cuts of Dedekind. For more details see Unit The
Real Numbers [Garden 2020e].

In 1888 he published the paper Was sind und was sollen die Zahlen? (What are numbers
and what should they be?) [Dedekind 1888]. In this article he gives a formal definition of
finite and infinite sets and an axiomatic foundation of the natural numbers.

We will explain his brilliant ideas in this section. The ideas of Dedekind are based on his
definition of a chain. We start by explaining chains in the context of the natural numbers:

Chains in the Set N0:

10.1 Definition. Let k be a natural number. The set

Tk := {x ∈ N0 | x ⩾ k}

is called a chain or, a Dedekind chain
in the set N0. In addition, the set
T∞ := ∅ is called the empty chain.

0 k k+ 1

Tk

10.2 Proposition. Let φ : N0 → N0 be defined by φ(n) := n+1 for all natural numbers
n, and let A be a subset of the set N0.
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Then the set A is a chain in the set N0 if and only if

φ(A) ⊆ A.

Proof. Step 1. Suppose that the set A is a chain in the set N0. Then we have φ(A) ⊆ A:

If A = ∅, then we have φ(A) = φ(∅) = ∅.
If A ̸= ∅, then there exists a natural number k such that A = Tk = {x ∈ N0 | x ⩾ k}. It follows
that

φ(A) = φ(Tk) = {φ(x) | x ⩾ k} = {x+ 1 | x ⩾ k} = Tk+1 ⊆ Tk.

Step 2. Suppose that we have φ(A) ⊆ A. Then the set A is a chain in the set N0:

If A = ∅, then the set A is by definition a chain. If A ̸= ∅, then, by Theorem 8.10, there exists
a minimal element k in the set A. It follows that

A ⊆ {x ∈ N0 | x ⩾ k} = Tk.

Conversely, let x be an element of the set Tk. Assume that the element x is not contained in
the set A.

Then there exists an element y of the
set A such that the element y+ 1 is not
contained in the set A.

k y y+ 1 x

⊆ A

On the other hand we have
y+ 1 = φ(y) ∈ φ(A) ⊆ A,

a contradiction. 2

10.3 Proposition. Let
(
Ki

)
i∈I

be a family of chains in the set N0. Then the set
∩

i∈I Ki

is also a chain in the set N0.

Proof. Let φ : N0 → N0 be defined by φ(n) := n + 1 for all natural numbers n. It follows
from Proposition 10.2 that

φ(Ki) ⊆ Ki for all i ∈ I.

It follows that φ
(∩

i∈I Ki

)
⊆

∩
i∈I Ki. Again by Proposition 10.2, it follows that the set∩

i∈I Ki is a chain in the set N0. 2

10.4 Definition. Let A be a subset of the set N0, and let

�A :=
∩

{K ⊆ N0 | K is a chain and A ⊆ K}.

The set �A is called the chain in the set N0 generated by the set A.

10.5 Proposition. Let A be a subset of the set N0, and let �A be the chain in the set N0

generated by the set A.

(a) If A = ∅, then we have �A = A = ∅.

(b) If A ̸= ∅ and if k is the minimal element of the set A, then we have

�A = Tk = {x ∈ N0 | x ⩾ k}.
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(c) Let a be a natural number. Then we have

{a} = Ta = {x ∈ N0 | x ⩾ a}.

Proof. (a) is obvious.

(b) Since the set Tk is a chain containing the set A as a subset, we have

�A =
∩

{K ⊆ N0 | K is a chain and A ⊆ K} ⊆ Tk.

On the other hand, since the element k belongs to the set A, the set Tk is a subset of the set
�A.

(c) follows from (b). 2

10.6 Proposition. Let A := {0}, and let φ : N0 → N0 be defined by φ(n) := n + 1 for
all natural numbers n. Then we have �A = N0 and φ(�A) = N.

Proof. The assertion follows from Proposition 10.5 and Theorem 2.5. 2

Dedekind’s Construction of the Natural Numbers:

Dedekind’s idea is as follows. He starts with the definition that a set A is called infinite if
there exists a bijective mapping α : A → A ′ from the set A onto a proper subset A ′ of the set
A. As a next step he postulates the existence of infinite sets (see Definition 10.7 and Axiom
10.8).

10.7 Definition. Let A be a set. The set A is called infinite if there exists a bijective
mapping α : A → A ′ from the set A onto a proper subset A ′ of the set A.

Otherwise, the set A is called finite.

10.8 Axiom. (Axiom of Infinity) There exists at least one infinite set.

His next observation is that each infinite set contains a set “similar” to the set of the natural
numbers. Today we would say that each infinite set contains a Peano set. In Proposition 10.6
we have seen the following:

Let A := {0}, and let φ : N0 → N0 be defined by φ(n) := n + 1 for all natural numbers n.
Then we have �A = N0 and φ(�A) = N.

Dedekind is now going in the opposite direction: Given an infinite set S he starts with a
mapping φ : S → S, and he looks for a subset N of the set S which may serve as the set of
the natural numbers or, in other words, which is a Peano set. This set N should fulfill the
following requirements:

(i) The mapping φ : S → S shall induce a mapping α : N → N. In other words, we need that
the set φ(N) is a subset of the set N. Later on, we will define

x+ 1 := α(x) for all x ∈ N.

(ii) The set N contains a distinguished element a such that

α(x) ̸= a for all x ∈ N.
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Later on, he will set 0 := a.

(iii) The set N is not too big, in other words, it should contain the elements

0, 1 = α(0), 2 = α(1), . . . ,

but no further elements.

Proposition 10.6 motivates the following idea: Let φ : S → S be a mapping from the set S into
itself, let a be an (appropriate) element of the set S, and let N be the chain generated by the
set {a}.

To do so, we have first to generalize the concept of a chain to an arbitrary set S. This is done
in Definition 10.9. As a next step we have to define what a chain generated by a subset is.
The definition is quite obvious and is the content of Definition 10.12.

10.9 Definition. Let A be a set, and let φ : A → A be a mapping from the set A

into itself. A subset K of the set A is called a chain with respect to the mapping
φ : A → A if we have

φ(K) ⊆ K.

If no confusion may arise, we also speak of a chain instead of a chain with respect to the
mapping φ : A → A.

10.10 Proposition. Let A be a set, let φ : A → A be a mapping from the set A into
itself, and let

(
Ki

)
i∈I

be a (non-empty) family of chains with respect to the mapping
φ : A → A. Then the set ∩

i∈I

Ki

is also a chain.

Proof. If K = ∅, then we have φ(K) = φ(∅) = ∅, and it follows that the set K is a chain.

Let x be an element of the set K. Then the element x is contained in each set Ki. Since each
of the sets Ki is a chain, it follows that the element φ(x) is contained in each set Ki implying
that

φ(x) ∈
∩
i∈I

Ki = K.

Hence, the set K is a chain. 2

10.11 Proposition. Let S be a set, let φ : S → S be a mapping from the set S into itself,
and let A be a subset of the set S.

(a) The set
�A :=

∩
{K ⊆ S | K is a chain and A ⊆ K}

is a chain.

(b) We have
A ⊆ �A and A = �A if and only if the set A is a chain.

(c) Let B be a chain containing the set A as a subset. Then the chain �A is also a subset



10 Dedekind’s Construction of the Natural Numbers 41

of the set B.

Proof. (a) follows from Proposition 10.10. Note that the set S is a chain containing the set
A as a subset. So we do not have an empty intersection.

(b) is obvious.

(c) We have
�A =

∩
{K ⊆ S | K is a chain and A ⊆ K} ⊆ B.

2

10.12 Definition. Let S be a set, let φ : S → S be a mapping from the set S into itself,
and let A be a subset of the set S.

The set
�A :=

∩
{K ⊆ S | K is a chain and A ⊆ K}

defined in Proposition 10.11 is called the chain generated by the set A.

The definition of a chain in Definition 10.9 implies that we have

φ(N) ⊆ N for N := {a}.

Hence, the mapping φ : S → S induces a mapping α : N → N. It remains to guarantee that
the mapping α : N → N is injective and that

α(x) ̸= a for all x ∈ N.

The first property can easily be guaranteed if the mapping φ : S → S is injective. The second
property can be guaranteed if there already exists an element a of the set S such that

φ(x) ̸= a for all x ∈ S.

To do so, Dedekind comes back to his definition of an infinite set S stating that there exists
a bijective mapping φ : S → S ′ from the set S onto a proper subset S ′ of the set S. This
mapping is by definition injective, and for an element a of the set S \ S ′ we have

φ(x) ̸= a for all x ∈ S.

In Theorem 10.13 we will see that this setting works quite well, that is, that the resulting set
N with the distinguished element a is a Peano set.

10.13 Theorem. Let S be an infinite set, let φ : S → S ′ be a bijective mapping from
the set S onto a proper subset S ′ of the set S, let a be an element of the set S \ S ′, and
let N := {a} be the chain generated by the set {a}.

(a) The mapping φ : S → S ′ induces an injective mapping α : N → N from the set N into
itself.

(b) Set 0 := a and
x+ := α(x) for all x ∈ N.

Then the set N is a Peano set.



10 Dedekind’s Construction of the Natural Numbers 42

Proof. (a) Since the set N is a chain, we have

φ(N) ⊆ N

implying that the mapping φ : S → S ′ induces a mapping α : N → N from the set N into
itself. Since the mapping φ : S → S ′ is bijective, the mapping α : N → N is injective.

(b) We have to verify the axioms of Peano, that is, Conditions (P1) to (P5) of Definition 2.1:

(P1) The set N contains a distinguished element 0:

By definition of the set N, it contains the element a = 0.

(P2) There is a function + : N → N, x 7→ x+ from the set N into itself:

The assertion follows from the fact that the mapping α : N → N is a mapping from the set N

into itself and from the definition

x+ := α(x) for all x ∈ N.

(P3) We have x+ ̸= 0 for all elements x of the set N:

Since the element a belongs to the set S \ S ′, we have φ(x) ̸= a for all elements x of the set S.
It follows that α(x) = φ(x) ̸= a for all elements x of the set N. Hence, we have

x+ = α(x) ̸= a = 0 for all x ∈ N.

(P4) If x and y are two elements of the set N such that x+ = y+, then we have x = y:

The assertion follows from the fact that the mapping α : N → N is injective.

(P5) If B is a subset of the set N such that

0 ∈ B and x+ ∈ B for all x ∈ B,

then we have B = N:

Since the set B is a subset of the set N, it is also a subset of the set S. We have

φ(x) = α(x) = x+ ∈ B for all x ∈ B

implying that
φ(B) ⊆ B,

that is, the set B is a chain with respect to the mapping φ : S → S. Since the set B contains
the element 0 = a, it follows from Proposition 10.11 that the set N = {a} is a subset of the set
B. It follows from

B ⊆ N ⊆ B

that B = N. 2

Historical Notes:

For the formal definition of finite and infinite sets, for the definition of the Peano sets and for
the recursive definition of functions see the historical notes in Unit Successor Sets and the
Axioms of Peano [Garden 2020c].

The first formal definition of the natural numbers is due to Dedekind as explained in detail
above:
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71. Erklärung. Ein System N heißt einfach unendlich, wenn es eine solche ähnliche
Abbildung φ von N in sich selbst gbt, dass N als Kette [...] eines Elements erscheint,
welches nicht in φ(N) enthalten ist. Wir nennen dieses Element, das wir im Folgenden
durch das Symbol 1 bezeichnen wollen, das Grundelement von N und sagen zugleich,
das einfach unendliche System N sei durch diese Abbildung φ geordnet.

Behalten wir die früheren bequemen Bezeichnungen für die Bilder und Ketten bei [...],
so besteht mithin das Wesen eines einfach uendlichen Systems N in der Existenz einer
Abbildung φ(N) und eines Elements 1, die den folgenden Bedingungen α, β, γ und δ

genügen:

α. N ′ ⊆ N.

β. N = 10.

γ. Das Element 1 ist nicht in N ′ enthalten.

δ. Die Abbildung φ ist ähnlich.

See [Dedekind 1932, Volume 3, p. 359].

71. Explanation. A system N is called simply infinite if there exists a similar mapping
φ of N into itself such that N is a chain of an element which is not contained in φ(N).
We call this element, which we want to denote by the symbol 1 in the following, the basic
element of N and we say at the same time that the simply infinite system N is ordered
by this mapping φ.

If we keep the previous convenient names for the images and chains, [...] the essence of
a simply infinite system N is the existence of a map φ(N) and an element 1 that fulfill
the following conditions α, β, γ and δ:

α. N ′ ⊆ N.

β. N = 10.

γ. The element 1 is not contained in N ′.

δ. The mapping φ is similar.

(Translation by the author.)

“Similar” means injective. “N is a chain of an element” means that the set N is the chain
generated by the set {a} (see Definition 10.12). Note that Dedekind starts his construction of
the set of the natural numbers with the element 1, whereas we started with the element 0.

A simply infinite set is an infinite set N with the property that there exists an element a

(called 1) of the set N and an injective mapping φ : N → N \ {a} such that N = {a}.

Dedekind’s condition (α) (N ′ ⊆ N) means that the set φ(N) is a subset of the set N. More
generally, Dedekind’s notation X ′ means φ(X).

Condition (β) (N = 10) means that the set N is the chain generated by the set {1}. More
generally, Dedekind’s notation X0 means �X (see Definition 10.12).

Condition (γ) (The element 1 is not contained in N ′) means that φ(x) ̸= 0 (or φ(x) ̸= 1 if
we start the natural numbers with the number 1) for all elements x of the set N.

Finally, Condition (δ) (The mapping φ is similar) means that the mapping φ : N → N is
injective.

*
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As a next step Dedekind proves the principle of induction:

80. Satz der vollständigen Induktion. (Schluss von n auf n ′). Um zu beweisen, dass
ein Satz für alle Zahlen n einer Kette m0 gilt, genügt es zu zeigen,

ρ. dass er für n = m gilt und

σ. dass aus der Gültigkeit des Satzes für eine Zahl n der Kette m0 stets seine Gültigkeit
auch für die folgende Zahl n ′ folgt.

See [Dedekind 1932, Volume 3, p. 361].

80. Theorem of induction. (Deduction from n to n ′). To prove that a sentence is valid
for all numbers n in a chain m0, it is sufficient to show

ρ. that it holds for n = m and

σ. that the validity of the sentence for a number n of the chain m0 always implies its
validity for the following number n ′.

(Translation by the author.)

Note that Dedekind’s notations m0 and n ′ mean

m0 = Tm = {x ∈ N0 | x ⩾ m} and n ′ = n+ 1.

*

Dedekind also introduces the standard order on the natural numbers. As we have seen in
Proposition 10.5 we have

{a} = Ta = {x ∈ N0 | x ⩾ a} for all a ∈ N0.

Since Dedekind uses the notation a0 for {a}, he introduces the standard order on the set of
the natural numbers as follows:

89. Erklärung. Die Zahl m heißt kleiner als die Zahl n [...], wenn die Bedingung

n0 ⊆ m ′
0

erfüllt ist [...].

See [Dedekind 1932, Volume 3, p. 363].

89. Explanation. The number m is called smaller than the number n [...] if the
condition

n0 ⊆ m ′
0

is satisfied [...].

(Translation by the author.)

This is equivalent to say that

m ⩽ n if and only if n0 = Tn ⊆ Tm = m0.

Note that we have

N0 = {x ∈ N0 | x < n} ·∪ {x ∈ N0 | x ⩾ n} = n ·∪ Tn.

So the definition
m ⩽ n if and only if Tn ⊆ Tm
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is equivalent to the definition

m ⩽ n if and only if m ⊆ n.

explained in Theorem 8.5 and Remark 8.6. In other words, our definition of the natural
numbers is equivalent to say that

n = {x ∈ N0 | x < n},

whereas Dedekind’s definition corresponds to

n = {x ∈ N0 | x ⩾ n}.

Both approaches have their specific advantages.

Finally, Dedekind also introduces the addition, the multiplication and the exponentiation of
the natural numbers. All this is done quite similar to the way explained in the previous
sections. In fact, all results of this unit are already contained in Dedekind’s paper of 1888.

11 Notes and References

A crucial step in the development of the natural numbers was the introduction of our decimal
number system which has been invented about 500 AD in Northern India. Arabian mathemati-
cians, in particular Abu Dschafar Muhammad ibn Musa al-Chwarizmi, took up these results
and spread them around the world. An excellent account about the history of number systems
is the book Histoire universelle des chiffres from Georges Ifrah [Ifrah 1981] (for an English
and a German translation see [Ifrah 1998] and [Ifrah 1989]).
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text books about numbers can be found at Literature about Numbers.

Dedekind, Richard (1872). Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg (cit. on
p. 37).

— (1888). Was sind und was sollen die Zahlen? Braunschweig: Vieweg (cit. on pp. 7, 37).
— (1932). Gesammelte mathematische Werke. Ed. by Robert Fricke, Emmy Noether, and

Öystein Ore. Braunschweig: Vieweg. There are three volumes: Volume 1: (1930), Volume
2: (1931), Volume 3: (1932). (Cit. on pp. 43, 44).

Ifrah, Georges (1981). Histoire Universelle des Chiffres. Paris: Editions Seghers. For an
English and a German version see [Ifrah 1998] and [Ifrah 1989]. (Cit. on p. 45).

— (1989). Universalgeschichte der Zahlen. Frankfurt, New York: Campus-Verlag. German
translation of [Ifrah 1981]. (Cit. on p. 45).

— (1998). Universal History of Numbers. London: Harville Press. English translation of
[Ifrah 1981]. (Cit. on p. 45).

Peano, Giuseppe (1889). Arithmetices Prinicipia - Nova Methodo Exposita. Romae and
Florentiae: Augustae Taurinorum. This book is published under the name Ioseph Peano.
(Cit. on p. 3).

https://math-garden.com/textbooks/literature-about-set-theory
https://math-garden.com/textbooks/literature-about-numbers


13 Publications of the Mathematical Garden 46

13 Publications of the Mathematical Garden

For a complete list of the publications of the mathematical garden please have a look at
www.math-garden.com.

Garden, M. (2020a). Families and the Axiom of Choice. Version 1.0.0. url: https://www.
math-garden.com/unit/nst-families (cit. on p. 22).

— (2020b). Ordered Sets and the Lemma of Zorn. Version 1.0.0. url: https://www.math-
garden.com/unit/nst-ordered-sets (cit. on p. 30).

— (2020c). Successor Sets and the Axioms of Peano. Version 1.0.0. url: https://www.
math-garden.com/unit/nst-successor-sets (cit. on pp. 3, 7, 9–11, 42).

— (2020d). Cardinal Arithmetic. Version 1.0.0. In preparation (cit. on pp. 12, 16, 20).
— (2020e). The Real Numbers. Version 1.0.0. In preparation (cit. on p. 37).

*

If you are willing to share comments and ideas to improve the present unit or hints about
further references, we kindly ask you to send a mail to info@math-garden.com or to use the
contact form on www.math-garden.com. Contributions are highly appreciated.

https://www.math-garden.com
https://www.math-garden.com/unit/nst-families
https://www.math-garden.com/unit/nst-families
https://www.math-garden.com/unit/nst-ordered-sets
https://www.math-garden.com/unit/nst-ordered-sets
https://www.math-garden.com/unit/nst-successor-sets
https://www.math-garden.com/unit/nst-successor-sets
https://www.math-garden.com/contact/


Index
Symbols
Tk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
�A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 41
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8∏

xj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31∑
xj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

m · n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
m ⩽ n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
m+ n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
mn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A
addition of natural numbers . . . . . . . . . . . . . . 12
al-Chwarizmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
associative law for the addition . . . . . . . . . . . 12
associative law for the multiplication . . . . . 17
Axioms of Peano . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C
cancellation laws for the addition . . . . . . . . . 14
cancellation laws for the multiplication . . . 18
chain generated by a set A . . . . . . . . . . . . . . . 41
chain in the set N0 . . . . . . . . . . . . . . . . . . . . . . . 37
chain in the set N0 generated by a set A . .38
chain with respect to a mapping φ : A → A

40
commutative law for the addition . . . . . . . . .13
commutative law for the multiplication . . . 18

D
Dedekind chain in the set N0 . . . . . . . . . . . . . 37
Dedekind, Richard . . . . . . . . . . . . . . . . . . . . . 7, 37
distributive laws . . . . . . . . . . . . . . . . . . . . . . . . . 18

E
empty chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
exponentiation of natural numbers . . . . . . . 19

F
finite set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Fraenkel, Abraham . . . . . . . . . . . . . . . . . . . . . 3, 4

I
Ifrah, Georges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
induction, principle of . . . . . . . . . . . . . . . . . . . . 10

infinite set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
isomorphism of ordered sets . . . . . . . . . . . . . . 31

M
multiplication of natural numbers . . . . . . . . 15

N
natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . .8

P
Peano set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Peano, Axioms of . . . . . . . . . . . . . . . . . . . . . . . . . .7
Peano, Giuseppe . . . . . . . . . . . . . . . . . . . . . . . . 3, 7
power of a number . . . . . . . . . . . . . . . . . . . . . . . 19
product of natural numbers . . . . . . . . . . . . . . 15

R
recursive definition . . . . . . . . . . . . . . . . . . . . . . . 11
recursive definition of functions . . . . . . . . . . .11

S
standard order . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
sum of natural numbers . . . . . . . . . . . . . . . . . . 12

T
transitive set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Z
Zermelo, Ernst . . . . . . . . . . . . . . . . . . . . . . . . . .3, 4


	Contents
	Introduction
	The Definition of the Natural Numbers
	The Principle of Induction and the Recursive Definition of Functions
	The Addition of Natural Numbers
	The Multiplication of Natural Numbers
	The Power of Natural Numbers
	Factorial of n and the Fibonacci Numbers
	The Standard Order on the Natural Numbers
	Generalized Arithmetic Laws
	Dedekind's Construction of the Natural Numbers
	Notes and References
	Literature
	Publications of the Mathematical Garden
	Index

