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1 Introduction

The present unit is part of the walk The Axioms of Zermelo and Fraenkel.

The study of functions f : A → B from a set A into a set B is one of the main topics in
mathematics.

The present unit provides the definition of functions within the set-theoretic framework of the
axiomatic of Zermelo and Fraenkel and presents first elementary properties of functions. For
the background about the axioms of Zermelo and Fraenkel see Unit Universe [Garden 2020a].

Definition of Functions (see Section 2):

The first task is to define a function f : A → B from a set A into a set B within the set-theoretic
framework of the axiomatic of Zermelo and Fraenkel:

In the framework of Zermelo and Fraenkel every mathematical object is a set. So, we have to
define a function f : A → B as a set. The solution is as follows:

A function f : A → B from a set A into a set B is defined to be a triple (f,A, B) where f is
a subset of the direct product A × B such that for each element x of the set A there exists
exactly one element y of the set B such that the pair (x, y) is contained in the set f. We write

f(x) := y or f : x 7→ y (Definition 2.2).

This definition is a very good model for our intuitive understanding of a function sending an
element x to an element y = f(x). In particular, given two functions f : A → B and g : A → B,
we have

f = g if and only if f(x) = g(x) for all x ∈ A (Theorem 2.6).

Given a function f : A → B, the set A is called the domain, and the set B is called the
codomain of the function f. The set

{f(x) | x ∈ A}

is called the range or the image of the function f (Definition 2.9).

Injective, Surjective and Bijective Functions (see Section 3):

Important properties of a function f : A → B are expressed by the notions injective, surjective
and bijective: Injective means that we have f(x) ̸= f(x ′) whenever x ̸= x ′. Surjective means
that the range {f(x) | x ∈ A} of the function f is the whole set B, and bijective means injective
and surjective (Definition 3.1).

As an example, let
R⩾0 := {x ∈ R | x ⩾ 0}

be the set of the non-negative real numbers, and consider the following functions:

f1 : R → R, f1 : x 7→ x2

f2 : R → R⩾0, f2 : x 7→ x2

f3 : R⩾0 → R, f3 : x 7→ x2

f4 : R⩾0 → R⩾0, f4 : x 7→ x2

https://www.math-garden.com/walk/zfc-axioms
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The function f1 : R → R is not injective (we have f1(−1) = 1 = f1(1)) and not surjective (we
have f1(x) ̸= −1 for all real numbers x).

The function f2 : R → R⩾0 is not injective (we have f2(−1) = 1 = f2(1)), but surjective (we
have f2(

√
x) = x for all real numbers x ⩾ 0).

The function f3 : R⩾0 → R is injective (x2 = y2 and x, y ⩾ 0 imply x = y), but not surjective
(we have f1(x) ̸= −1 for all real numbers x).

Finally, the function f4 : R⩾0 → R⩾0 is injective and surjective, that is, bijective.

The Composition of Functions (see Section 4):

Given two functions f : A → B and g : B → C from a set A into a set B and from the set B

into a set C, respectively, one defines the composite function g ◦ f by

(g ◦ f)(x) := g
(
f(x)

)
for all x ∈ A.

The function g ◦ f : A → C is a function from the set A into the set C.

The composition of two functions has the following nice properties:

The composition is associative, that is, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f (see Proposition 4.4).

If the functions f : A → B and g : B → C are injective (respectively surjective, respectively
bijective), then the composite g◦f : A → C is also injective (respectively surjective, respectively
bijective) (see Proposition 4.6).

Of particular interest is the case where A = B = C: The set of the bijective function from a
set A into itself forms a so-called group. For more details see Theorem 4.12.

Restrictions and Extensions of Functions (see Section 5):

Let f : A → B be a function from a set A into a set B, and let A ′ and B ′ be two subsets of the
sets A and B, respectively. The question is: Does there exist a function g : A ′ → B ′ such that

g(x) = f(x) for all x ∈ A ′?

Obviously, a necessary condition for the exis-
tence of the function g : A ′ → B ′ is the relation

f(A ′) ⊆ B ′.

This condition is also sufficient (see Theorem
5.2).

A

f

A ′

B

B ′

f(A ′)

The function g : A ′ → B ′ is called the restriction of the function f : A → B. Extension
means the inverse question: Let f : A → B be a fuction from a set A into a set B, and let A ′

and B ′ be two sets such that
A ⊆ A ′ and B ⊆ B ′.

Does there exist a function h : A ′ → B ′ from the set A ′ into the set B ′ such that

f(x) = h(x) for all x ∈ A?
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The answer is obviously yes. However, this question is a central topic in analysis when we
consider functions with additional properties such that continuous functions, differentiable
functions or holomorphic functions. As a simple example for a question about extensions of
continuous functions consider the two functions

f1 : R \ {0} → R, f1 : x 7→ 1
x

and
f2 : R \ {0} → R, f2 : x 7→ sin(x)

x
.

Do there exist continuous functions h1 : R → R and h2 : R → R such that

f1(x) = h1(x) and f2(x) = h2(x) for all x ∈ R \ {0}?

The function h1 : R → R does not exist. The function h2 : R → R exists if we set h2(0) := 0.
We won’t go into details in this unit.

Another important question about functions is whether two different functions can be com-
bined: Given two functions f1 : A1 → B1 and f2 : A2 → B2, there exists exactly one function
f : A1 ∪A2 → B1 ∪ B2 such that

f(x) = f1(x) for all x ∈ A1 and f(x) = f2(x) for all x ∈ A2

provided that we have

f1(x) = f2(x) for all x ∈ A1 ∩A2 (see Propositions 5.5 and 5.6).

Functions and Equivalence Relations (see Section 6):

In the unit Direct Products [Garden 2020b] equivalence relations are introduced (see also
Definition 6.1). Let ∼ be an equivalence relation on a set A. For each element x of the set A

let
�x := {z ∈ A | z ∼ x}

be the equivalence class of the element x, and let

�A := {�x | x ∈ A}

be the set of the equivalence classes with respect to the equivalence relation ∼. Let f : A → B be
a function from the set A into a set B. An important question about functions and equivalence
relations is the question under which condition a function F : �A → B exists such that

F(�x) = f(x) for all x ∈ A?

Such a function F : �A → B exists if and only if we have

f(x) = f(y) for all x, y ∈ A s. t. x ∼ y (see Proposition 6.4).

The existence of such a function F : �A → B often reduces complexity since the set �A is (often)
much smaller than the set A.

The function F : �A → B is called well-defined if the function f : A → B fulfills the above
condition (see Definition 6.6).
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Equivalent Sets (see Section 7):

Counting the elements of a set A means that we choose a first element that we call No. 1, then
choose a second element that we call No. 2, and so on.

For a set of three elements we obtain the following map-
ping between the elements of the set A and the numbers
1, 2 and 3.

More formally, we define a bijective function f : A →
B := {1, 2, 3} from the set A onto the set B = {1, 2, 3}.

A
1

2

3

B

Hence, counting is one example for the application of bijective functions between two sets.
Counting and, more generally, cardinalities are explained in Units Natural Numbers [Garden
2020c] and Cardinal Numbers [Garden 2020d].

Two sets A and B are called equivalent if there exists a bijective mapping f : A → B from
the set A onto the set B (Definition 7.1).

Often it is very helpful to replace one set by another equivalent set: An example in this
direction is Proposition 7.4 stating that two arbitrary set A and B always are equivalent to
two sets A ′ and B ′ with the additional property that A ′∩B ′ = ∅. Even stronger is Proposition
7.6 stating that for each two sets A and B one can find a set B ′ equivalent to the set B such
that A ∩ B ′ = ∅.

2 Functions

Definition of a Function:

The definition of a function will be based on the notion of the direct product of two sets which
is defined as follows:

2.1 Definition. (a) Let A be a set. Then the set of the subsets of the set A is called the
power set of the set A. It is denoted by

P(A) := {X | X ⊆ A}.

(b) Let a and b be two sets.

The ordered pair (a, b) is defined by (a, b) :=
{
{a}, {a, b}

}
.

(c) Let A and B be two sets. Set

A× B := {x ∈ P
(
P(A ∪ B)

)
| ∃ a ∈ A ∃ b ∈ B s.t. x = (a, b)}.

The set A × B is called the direct product of the sets A and B or, equivalently, the
Cartesian product of the sets A and B.

We write A× B := {(a, b) | a ∈ A and b ∈ B} for short.

Fore more details about ordered pairs and the direct product of two sets see Unit Direct
Products [Garden 2020b].
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2.2 Definition. Let A and B be two sets.

(a) A function f : A → B from the set A into the set B is a triple (f,A, B) where the
set f is a subset of the direct product A× B with the following property:

For each element x of the set A, there is exactly one element y of the set B such that the
pair (x, y) is contained in the set f.

A function f : A → B from the set A into the set B is also called a mapping from the
set A into the set B or a transformation from the set A into the set B.

(b) Let f : A → B be a function from the set A into the set B, and let x be an element of
the set A. The unique element y of the set B such that the pair (x, y) is contained in the
set f is denoted by y = f(x). We also write f : x 7→ y or, equivalently, f : x 7→ f(x).

(c) Let f : A → B be a function from the set A into the set B. Then the set

Gf := {
(
x, f(x)

)
∈ A× B | x ∈ A}

is called the graph of the function f.

French / German. Function = Fonction = Funktion. Mapping = Application = Abbildung.
Graph = Graphe = Graph.

Note that the word function is often reserved for mappings from a set X into the field of the
real or the field of the complex numbers. The word mapping is used in the general case.

2.3 Example. The following figures illustrate a function and the graph of this function:

A

a
f

b

B

f(a)

f(b)

z

Function f : A → B

A

B

z

f(a)

f(b)

a b

(
a, f(a)

) (
b, f(b)

)

Graph of the function f : A → B

2.4 Proposition. Let f : A → B be a function from a set A into a set B, and suppose
that the set B is a proper subset of a set B ′.

Then the triple (f,A, B ′) is a function f : A → B ′.

Proof. Let x be an element of the set A. Since f : A → B is a function, there exists exactly
one element y of the set B such that the pair (x, y) is contained in the set f. Since the set f

is a subset of the set A× B, there is no element y ′ of the set B ′ \ B such that the pair (x, y ′)

is contained in the set f. It follows that the triple (f,A, B ′) is a function or, equivalently, that
f : A → B ′ is a function. 2

2.5 Remarks. Let A and B be two sets, and let f : A → B be a function from the set A

into the set B.

(a) Note that the set f is a relation on the direct product A × B. (A relation is a subset
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of the direct product A× B. For details see Unit Direct Products [Garden 2020b]).

(b) We will sometimes speak of a function f instead of a function f : A → B if there is no
danger of confusion concerning the sets A and B (see Proposition 2.4).

(c) It may occur that the sets A and B are both empty. In this case we have f = ∅.
However, if the set A is non-empty, the set B is also non-empty since for each element x

of the set A, there exists exactly one element y = yx of the set B such that the pair (x, y)
is contained in the set f.

(d) Usually, we think of a function from the set A into the set B as an object mapping
each element x of the set A to an element y of the set B.

In other words, the elements x and y of the sets A and B, respectively are related with
respect to the relation (function) f if and only if f(x) = y.

(e) The graph Gf is in fact the same set as the set f of the triple (f,A, B). If the set B is
a proper subset of a set B ′ and if f ′ denotes the triple (f,A, B ′) of Proposition 2.4, then
we have Gf′ = Gf.

Elementary Properties of a Function:

2.6 Theorem. Let A and B be two sets, and let f : A → B and g : A → B be two
functions from the set A into the set B.

Then we have f = g if and only if f(x) = g(x) for all elements x of the set A.

Proof. Step 1. Suppose that f = g. Then we have f(x) = g(x) for all elements x of the
set A:

Let x be an element of the set A. Since f and g are functions, there exists exactly one element
yf and exactly one element yg of the set B such that

(x, yf) ∈ f and (x, yg) ∈ g.

Since f = g, we obtain yf = yg. Hence, we have f(x) = yf = yg = g(x).

Step 2. Suppose that we have f(x) = g(x) for all elements x of the set A. Then we have
f = g:

Let (x, y) be an element of the set f. Then we have y = f(x) = g(x), implying that the pair
(x, y) is contained in the set g. It follows that the set f is a subset of the set g. In the same
way we see that the set g is a subset of the set f. Altogether, we have f = g. 2

In Proposition 2.8 we will consider functions f : A → B where A = ∅ is the empty set. For
that purpose we need the following elementary result about direct products:

2.7 Proposition. Let A and B be two sets.

(a) We have A = ∅ or B = ∅ if and only if A× B = ∅.

(b) We have A ̸= ∅ and B ̸= ∅ if and only if A× B ̸= ∅.

Proof. For the proof see Unit Direct Products [Garden 2020b]. 2
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2.8 Proposition. Let A and B be two sets, and let f : A → B be a function from the set
A into the set B.

If A = ∅, then we have f = ∅.

Proof. By Proposition 2.7, it follows from A = ∅ that A × B = ∅. Since the function f is a
subset of the direct product A× B = ∅ (Definition 2.2), we get f = ∅. 2

Definition of the Domain and of the Range of a Function:

2.9 Definition. Let f : A → B be a function from a set A into a set B.

(a) The set A is called the domain of the function f, and the set B is called the
codomain of the function f.

(b) The set
R := {f(x) | x ∈ A} ⊆ B

is called the range of the function f or, equivalently, the image of the function f.
We also write R = f(A) or R = Imf.a

(c) Let X be a subset of the set A. Then the set

Y := {f(x) | x ∈ X} ⊆ B

is called the image of the set X under the function f. We also write Y = f(X).
aSometimes the word range is also used in the meaning of the codomain.

French / German. Domain = Domaine de définition = Definitionsbereich; Codomain =
Codomaine = Wertebereich; Image (or range) = Imâge = Bild.

2.10 Remark. Note that the definition of

f(X) := {f(x) | x ∈ X}

for a function f : A → B and a subset X of the set A in Definition 2.9 may be ambiguous:
If the set X is also an element of the set A, then the value f(X) has two meanings. For
example, if A :=

{
a, b, {a, b}

}
, B := {c, d} and if the function f : A → B is given by

f : a 7→ c, b 7→ d and {a, b} 7→ c, then we have

f({a, b}) = c and f({a, b}) = {c, d}

which is obviously nonsense. In general, there is no danger of confusion.

2.11 Examples. Let A := {x, y, z} and B := {a, b, c} be two sets, and suppose that the
elements x, y and z and the elements a, b and c are pairwise distinct.
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(a) Let f : A → B be defined by f(x) := a,
f(y) := b and f(z) := c.

Then we have f(A) = B, that is, the
range of the function f is the set B. If
X := {z}, then we have f(X) = {c}.

A
x

y

z

B
a

b

c

(b) Let g : A → B be defined by g(x) :=

a, g(y) := b and g(z) := b.

Then we have g(A) = {a, b} ̸= B, that is,
the range of the function g is a proper
subset of the set B. If X := {z}, then we
have g(X) = {b}.

A
x

y

z

B
a

b

c

2.12 Definition. Let f : A → B be a function from a set A into a set B, and let Y be a
subset of the set B. We set

f−1(Y) := {x ∈ A | f(x) ∈ Y} ⊆ A.

The set f−1(Y) is called the inverse image of the set Y under the function f (see
also Remark 4.8).

French / German. Inverse Image = Imâge réciproque = Urbild.

2.13 Proposition. Let f : A → B be a function from a set A into a set B. Then we have
f(∅) = ∅ and f−1(∅) = ∅.

Proof. The proof is obvious. 2

The Identity Function and the Inclusion Map:

Even though the identity function and the inclusion map are rather trivial, they play an
important role in the theory of functions.

2.14 Definition. (a) Let A be a set, and let f : A → A be the function defined by

f(x) := x for all x ∈ A

or, equivalently, by

f := {(x, y) ∈ A×A | y = x} = {(x, x) ∈ A×A | x ∈ A}.

The function f : A → A is called the identity function on the set A.

It is denoted by idA : A → A or, equivalently, by id : A → A if no confusion may arise.

Note that id = ∅ if A = ∅.

(b) Let B be a set, let A be a subset of the set B, and let g : A → B be the function
defined by

g(x) := x for all x ∈ A
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or, equivalently, by

g := {(x, y) ∈ A× B | y = x} = {(x, x) ∈ A× B | x ∈ A}.

The function g : A → B is called the inclusion map or, equivalently, the inclusion
function.

It is denoted by ι : A → B or, equivalently, by A ↪→ B.

French / German. Identity = Identité = Identität

2.15 Proposition. (a) Let id : A → A be the identity function on a set A. Then the
range of the function id : A → A equals the set A.

(b) Let ι : A → B be the inclusion map for a subset A of a set B. Then the range of the
function ι : A → B equals the set A.

Proof. The proof is obvious. 2

Historical Notes:

The definition of a function in the set-theoretical way described in Definition 2.2 is due to
Felix Hausdorff (see [Ebbinghaus 2010, p. 89, footnote 225]):

Zuvor betrachten wir eine Menge P solcher Paare, und zwar von der Beschaffenheit,
dass jedes Element a von A in einem und nur einem Paare p von P als erstes Element
auftritt. Jedes Element a bestimmt auf diese Weise ein und nur ein Element b, nämlich
dasjenige, mit dem es zu einem Paare p = (a, b) verbunden auftritt; dieses durch a

bestimmte [...] Element bezeichnen wir mit

b = f(a)

und sagen, dass hiermit in A [...] eine eindeutige Funktion von A definiert sei.

See [Hausdorff 1914, p. 33].

We first consider a set P of such pairs with the additional property that every element
a of A is contained as a first element in one and only one pair p of P. Each element a

determines in this way one and only one element b, namely the element b contained in
the pair p = (a, b); we denote this element determined by a [...] by

b = f(a)

and say that this defines a unique function on the set A.

(Translation by the author.)

Note that Theorem 2.6 is also mentioned by Hausdorff (see [Hausdorff 1914, p. 33]).

3 Injective, Surjective and Bijective Functions

Definition of Injective, Surjective and Bijective Functions:
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3.1 Definition. Let A and B be two sets, and let f : A → B be a function from the set
A into the set B.

(a) The function f : A → B is called injective if f(x) ̸= f(x ′) for each two elements x, x ′

of the set A such that x ̸= x ′.

(b) The function f : A → B is called surjective if for each element y of the set B there
exists an element x of the set A such that f(x) = y.

(c) The function f : A → B is called bijective if f is injective and surjective.

French / German. Injective = Injective = Injektiv. Surjective = Surjective = Surjektiv.
Bijective = Bijective = Bijektiv.

3.2 Examples. Suppose that the elements x, y, z and t and that the elements a, b, c
and d are pairwise distinct. Let the functions

f : {x, y, z} → {a, b, c, d}

g : {x, y, z, t} → {a, b, c, d} and

h : {x, y, z, t} → {a, b, c, d}

be defined as follows:

f(x) := a, f(y) := b, f(z) := c.

g(x) := a, g(y) := b, g(z) := c, g(t) := c.

h(x) := a, h(y) := b, h(z) := c, h(t) := d.

x
f

y

z

a

b

c

d

x
g

y

z

t

a

b

c

d

x
h

y

z

t

a

b

c

d

(a) The function f : {x, y, z} → {a, b, c, d} is injective, but not surjective.

(b) The function g : {x, y, z, t} → {a, b, c, d} is neither injective nor surjective.

(c) The function h : {x, y, z, t} → {a, b, c, d} is bijective.

3.3 Examples. (a) The identity function id : A → A (Definition 2.14) is bijective.

(b) The inclusion map ι : A → B (Definition 2.14) is injective. It is bijective if and only
if B = A. In this case the inclusion map is the identity function.

Elementary Properties of Injective, Surjective and Bijective Functions:

3.4 Proposition. Let A and B be two sets, and let f : A → B be a function from the set
A into the set B.
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The function f : A → B is injective if and only if for all elements x and x ′ of the set A,
the equation f(x) = f(x ′) implies that x = x ′.

Proof. The proof is obvious. 2

3.5 Proposition. Let f : A → B be a function from a set A into a set B, and let R be
the range of the function f.

Then the triple (f,A, R) is a surjective function f : A → R from the set A onto the set R.

Proof. Since R = {f(x) | x ∈ A}, the set f = {(x, f(x)) | x ∈ A} is a subset of the direct product
A×R. It follows that for each element x of the set A, there exists exactly one element y = f(x)

of the set R such that the pair (x, y) is contained in the set f, that is, f : A → R is a function.

In order to show that the function f : A → R is surjective, let b be an element of the set
R = {f(x) | x ∈ A}. Obviously, there exists an element a of the set A such that b = f(a). 2

Injective Functions preserve the ⊆-Relation:

3.6 Proposition. Let A and B be two sets, and let f : A → B be a function from the set
A into the set B. Let X and Y be two subsets of the set A.

(a) If the set X is a subset of the set Y, then the set f(X) is a subset of the set f(Y).

(b) Suppose in addition that the function f : A → B is injective. Then we have

X ⊆ Y if and only if f(X) ⊆ f(Y).

Proof. Let X and Y be two subsets of the set A.

(a) Suppose that the set X is a subset of the set Y. Let z be an element of the set f(X). Then
there exists an element x of the set X such that z = f(x). Since the set X is a subset of the set
Y, the element x is contained in the set Y implying that the element z = f(x) is contained in
the set f(Y). Hence, the set f(X) is a subset of the set f(Y).

(b) Suppose that the set f(X) is a subset of the set f(Y). Let x be an element of the set X, and
let z := f(x). Since the set f(X) is a subset of the set f(Y), the element z is contained in the
set f(Y). It follows that there exists an element y of the set Y such that z = f(y). Since the
function f : A → B is injective, it follows from f(x) = z = f(y) that x = y implying that the
element x = y is contained in the set Y. Hence, the set X is a subset of the set Y. 2

Historical Notes:

I could not find out who has introduced the notions injective, surjective and bijective, but I
believe that I have read somewhere that these notions have been introduced by Bourbaki:

Définition 10. Soit f une application de A dans B. On dit que f est une injection, ou que
f est une application injective, si deux éléments distincts de A ont des images distinctes
par f. On dit que f est une surjection, ou que f est une application surjective, si f(A) = B.
On dit que f est une bijection, ou que f est une application bijective, si f est à la fois
injective et surjective.

See [Bourbaki 2006, pp. E II.16 - 17].
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Definition 10. Let f be a mapping from A into B. One says that f is an injective
mapping if each two different elements of A have different images via f. One says that f
is a surjective mapping if f(A) = B. One says that f is a bijective mapping if f is injective
and surjective.

(Translation by the author.)

4 The Composition of Functions

Definition of the Composite of two Functions:

4.1 Definition. Let A, B and C be three sets, and let f : A → B and g : B → C be two
functions from the set A into the set B and from the set B into the set C, respectively.

Define the function h : A → C by h(x) := g
(
f(x)

)
for all elements x of the set A.

(a) The function h : A → C is called the composite of the two functions f : A → B

and g : B → C.

(b) The function h : A → C is denoted by g ◦ f : A → C.

French / German. Composition of two functions = Composition de deux fonctions =
Verkettung / Hintereinanderausführung von zwei Funktionen.

4.2 Example. Let A := {x, y, z}, B := {a, b, c, d}, C := {x, y, z, t}, and let f : A → B and
g : B → C be defined as follows:

f : x 7→ a, y 7→ b, z 7→ b and g : a 7→ x, b 7→ x, c 7→ z, d 7→ z.

Then the function h := g ◦ f : A → C is defined by h : x 7→ x, y 7→ x, z 7→ x.

x
f

y

z

a
g

b

c

d

x

y

z

t

x
h

y

z

x

y

z

t

4.3 Remarks. (a) Alternatively, we may define the composite h = g ◦ f of Definition 4.1
as a subset of the direct product A× C. To do so, set

h := {(x, z) ∈ A× C | z = g
(
f(x)

)
}.

For each element x of the set A, there is exactly one element z of the set C such that the
pair (x, z) is an element of the set h, namely the element z := g

(
f(x)

)
. Hence, the set h

is a function.

(b) Note that if f = ∅, then we have g ◦ f = ∅.

Functional Composition is Associative:
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4.4 Proposition. Let A, B, C and D be four sets, and let f : A → B, g : B → C and
h : C → D be three functions. Then we have

(h ◦ g) ◦ f = h ◦ (g ◦ f),

that is, functional composition is associative.

Proof. Let x be an element of the set A. Then we have(
(h ◦ g) ◦ f

)
(x) = (h ◦ g)

(
f(x)

)
= h

(
g(f(x))

)
= h

(
(g ◦ f)(x)

)
=

(
h ◦ (g ◦ f)

)
(x).

It follows from Theorem 2.6 that (h ◦ g) ◦ f = h ◦ (g ◦ f). 2

Functional Composition is in general not Commutative:

4.5 Example. Let A := {a, b, c} such that the elements a, b and c are pairwise distinct,
and let f : A → A and g : A → A be two functions from the set A into itself defined by:

f : a 7→ b, b 7→ a, c 7→ c and g : a 7→ a, b 7→ c, c 7→ b.

Then we have
(g ◦ f)(a) = c ̸= b = (f ◦ g)(a)
(g ◦ f)(b) = a ̸= c = (f ◦ g)(b)
(g ◦ f)(c) = b ̸= a = (f ◦ g)(c)

which implies that functional composition is in general not commutative.

Composition of Injective, Surjective and Bijective Functions:

4.6 Proposition. Let A, B and C be three sets, and let f : A → B and g : B → C be two
functions from the set A into the set B and from the set B into the set C, respectively.

(a) If the functions f : A → B and g : B → C are injective, then the function g ◦ f : A → C

is also injective.

(b) If the functions f : A → B and g : B → C are surjective, then the function g◦f : A → C

is also surjective.

(c) If the functions f : A → B and g : B → C are bijective, then the function g ◦ f : A → C

is also bijective.

Proof. (a) Suppose that the functions f : A → B and g : B → C are injective.

Suppose that (g ◦ f)(x) = (g ◦ f)(x ′) for two elements x and x ′ of the set A. It follows that

g(f(x)) = g(f(x ′)).

Since the function g : B → C is injective, we get f(x) = f(x ′). Since the function f : A → B is
injective, we get x = x ′. It follows that the function g ◦ f : A → C is injective.

(b) Suppose that the functions f : A → B and g : B → C are surjective.
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Let z be an element of the set C. Since the function g : B → C is surjective, there exists an
element y of the set B such that g(y) = z. Since the function f : A → B is surjective, there
exists an element x of the set A such that f(x) = y implying that

(g ◦ f)(x) = g(f(x)) = g(y) = z,

that is, the function g ◦ f : A → C is surjective.

(c) follows from (a) and (b). 2

Definition of the Inverse Function:

4.7 Definition. Let A and B be two sets, and let f : A → B be a bijective function. We
define the function g : B → A as follows: For each element y of the set B, let x be the
unique element of the set A such that f(x) = y. Set g(y) := x.

The function g : B → A is called the inverse function of the function f : A → B. It is
denoted by f−1 : B → A.

French / German. Inverse function = Fonction inverse = Inverse Funktion.

4.8 Remarks. (a) If f : A → B is a bijective function from a set A onto a set B, then the
function f is a subset of the set A× B. The inverse function f−1 : B → A from the set B

onto the set A can also be defined as follows:

f−1 := {(y, x) ∈ B×A | (x, y) ∈ f}.

(b) Let f : A → B be a function, and let Y be a subset of the set B. Note that the definition
of f−1(Y) may be ambiguous:

If the function f : A → B is bijective and if the set Y is also an element of the set B, then
f−1(Y) denotes the element x of the set A such that f(x) = Y and at the same time the
subset

{x ∈ A | f(x) ∈ Y}

of the set A (see also Remark 2.10). The correct interpretation will be explained whenever
necessary.

4.9 Proposition. Let A and B be two sets, let f : A → B be a bijective function, and let
f−1 : B → A be the inverse function of the function f : A → B. Then we have

f ◦ f−1 = idB : B → B and f−1 ◦ f = idA : A → A.

Proof. The assertion follows directly from Definition 4.7. 2

4.10 Proposition. Let A and B be two sets, and let f : A → B and g : B → A be two
bijective functions. Then we have(

g ◦ f
)−1

= f−1 ◦ g−1.
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Proof. Let x be an element of the set A, and let y be an element of the set B. Then we have(
(g ◦ f

)
◦
(
f−1 ◦ g−1

))
(y) = g

(
f
(
f−1(g−1(y))

))
= g

(
g−1(y)

)
= y and((

f−1 ◦ g−1
)
◦
(
g ◦ f

))
(x) = f−1

(
g−1

(
g(f(x))

))
= f−1

(
f(x)

)
= x.

2

The Bijective Functions f : A → A form a Group:

We recall the definition of a group:

4.11 Definition. (a) A pair (G, ∗) consisting of a non-empty set G and an operation

∗ : G×G → G

on the set G is called a group if the following conditions are fulfilled:

(i) We have
x ∗ y ∈ G for all x, y ∈ G (closure).

(ii) We have

(x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ G (associativity).

(iii) There exists an element id of the group G such that

x ∗ id = id ∗ x = x for all x ∈ G (existence of an identity element).

(iv) For each element x of the group G, there exists an element y = yx of the group G

such that
x ∗ y = id = y ∗ x (existence of an inverse element).

The element y is denoted by x−1.

(b) If the pair (G, ∗) is a group, we often just say that G is a group or that G = (G, ∗) is
a group.

(c) A group G = (G, ∗) is called a commutative group or, equivalently, an abelian
group if we have

x ∗ y = y ∗ x for all x, y ∈ G.

French / German. Group = Groupe = Gruppe. Commutative = Commutatif = Kommu-
tativ. Abelian = Abélien = Abelsch.

For more details see Unit Groups and Subgroups [Garden 2020e].

4.12 Theorem. Let A be a set, and let

B(A) := {f : A → A | f is bijective}

be the set of the bijective functions from the set A into itself.
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Then the pair
(
B(A), ◦

)
is a group where ◦ denotes the composition of two functions of

the set B(A). In general, this group is not abelian.

Proof. Step 1. The set B(A) is non-empty:

If A = ∅, then we have B(A) = {∅} ̸= ∅.

If A ̸= ∅, then the function id : A → A; id : x 7→ x is contained in the set B(A).

Step 2. We have f ◦ g ∈ B(A) for all functions f and g of the set B(A):

By definition of the composite f ◦ g of two functions f : A → A and g : A → A, the function
f ◦ g is a function from the set A into itself. It follows from Proposition 4.6 that the function
f ◦ g is bijective:

Step 3. The composition is associative:

The assertion follows from Proposition 4.4.

Step 4. The function id : A → A of Step 1 is the identity element:

The proof is obvious.

Step 5. For each function f of the set B(A), there exists an inverse f−1 : A → A:

The assertion follows from Proposition 4.9.

Step 6. The group B(A) is in general not abelian:

An example of two bijective functions f and g such that f◦g ̸= g◦ f is given in Example 4.5. 2

Historical Notes:

The definition of an inverse function in the set-theoretical framework is also due to Hausdorff:
It refers to the text of Hausdorff cited in the historical remarks at the end of Section 2.

Ist die Menge P aber so beschaffen, daß auch jedes Element b in genau einem Paare als
zweites Element auftritt, so bestimmt auch b ein einziges mit ihm verbundenes Element

a = φ(b),

und wir haben eine zweite, in B definierte eindeutige Funktion. Diese beiden Funktionen
heißen zueinander invers.

See [Hausdorff 1914, p. 33].

If the set P has the property that also each element b is contained as a second element
in exactly one pair, then b also determines exactly one element

a = φ(b)

related to b, and we obtain a second function which is defined on B. These two functions
are called inverse to each other.

(Translation by the author.)

5 Restrictions and Extensions of Functions

Restrictions and Extensions:
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5.1 Definition. Let f : A → B and g : A ′ → B ′ be two functions from a set A into a
set B and from a set A ′ into a set B ′, respectively. Suppose that the sets A ′ and B ′ are
subsets of the sets A and B, respectively.

We say that the function g : A ′ → B ′ is
a restriction of the function f : A →
B or, equivalently, that the function f :

A → B is an extension of the function
g : A ′ → B ′ or, equivalently, that the
function g : A ′ → B ′ is induced by the
function f : A → B if we have

A

A ′
g

f

B

B ′

f(x) = g(x) for all x ∈ A ′.

In this case we write g = f|A′ : A ′ → B ′.

French / German. Restriction = Restriction = Einschränkung. Extension = Prolongement
= Fortsetzung. Induced by = Induit par = Induziert von.

5.2 Theorem. Let f : A → B be a function from a set A into a set B, and let A ′ and B ′

be two subsets of the sets A and B, respectively.

Then a restriction g : A ′ → B ′ exists if and only if f(A ′) ⊆ B ′.

In this case the restriction g : A ′ → B ′ of the function f : A → B is unique.

Proof. If a restriction g : A ′ → B ′ exists, then the set f(A ′) = g(A ′) is obviously a subset of
the set B ′.

Conversely, suppose that the set f(A ′) = g(A ′) is a subset of the set B ′. Let g := {(x, f(x)) | x ∈
A ′}. Since the image f(A ′) is a subset of the set B ′, the set g is a subset of the direct product
A ′ × B ′. Obviously, for each element x ′ of the set A ′, there exists exactly one element y ′ of
the set B ′ such that the pair (x ′, y ′) is contained in the set g, namely the element y ′ := f(x ′).
Hence, the triple (g,A ′, B ′) is a restriction of the function f : A → B.

The uniqueness of the function g : A ′ → B ′ is obvious. 2

5.3 Proposition. Let f : A → B be a function from a set A into a set B, and let A ′ be a
subset of the set A.

(a) If the function f : A → B is injective, then the restriction f|A′ : A ′ → B is also injective.

(b) If the function f : A → B is injective, then the restriction f|A′ : A ′ → f(A ′) is bijective.

(c) The restriction f|A : A → f(A) is surjective.

(d) The restriction f|A′ : A ′ → f(A ′) is surjective.

Proof. The proof is obvious. 2

For the proof of Proposition 5.5 we will need the following elementary result about the direct
product of sets:
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5.4 Proposition. Let A1, A2, B1 and B2 be four sets. Then we have

(A1 × B1) ∪ (A2 × B2) = (A1 ∪A2)× (B1 ∪ B2).

Proof. For a proof see Unit Direct Products [Garden 2020b]. 2

5.5 Proposition. Let A1, A2, B1 and B2 be four non-empty sets, and let f1 : A1 → B1

and f2 : A2 → B2 be two functions of the sets A1 and A2 into the sets B1 and B2,
respectively.

Suppose that f1(x) = f2(x) for all elements x of the set A1 ∩A2.a

(a) There exists exactly one function f :

A1 ∪ A2 → B1 ∪ B2 such that f|A1
= f1

and f|A2
= f2.

(b) If the functions f1 : A1 → B1 and
f2 : A2 → B2 are surjective, then the
function f : A1 ∪ A2 → B1 ∪ B2 is also
surjective.

aNote that this implies that f1(x) = f2(x) ∈ B1 ∩B2 for all x ∈ A1 ∩A2.

A1

A2

f1

f2

B1

B2

Proof. (a) The functions f1 : A1 → B1 and f2 : A2 → B2 are subsets of the direct product
A1 × B1 and of the direct product A2 × B2, respectively.

Set f := f1 ∪ f2. Then the set f is a subset of the set

(A1 × B1) ∪ (A2 × B2) = (A1 ∪A2)× (B1 ∪ B2) (Proposition 5.4).

Since

f(x) =


f1(x) if x ∈ A1 \A2

f2(x) if x ∈ A2 \A1

f1(x) = f2(x) if x ∈ A1 ∩A2,

f : A1 ∪A2 → B1 ∪ B2 is a function such that f|A1
= f1 and f|A2

= f2.

If g : A1 ∪ A2 → B1 ∪ B2 is a second function such that g|A1
= f1 and g|A2

= f2, then it
follows that

g(x) = f1(x) = f(x) for all x ∈ A1 and g(x) = f2(x) = f(x) for all x ∈ A2,

hence we have g = f.

(b) Let y be an element of the set B1 ∪ B2. If the element y is contained in the set B1, then
there exists an element x of the set A1 such that f(x) = f1(x) = y. The case is y ∈ B2 is
similar. 2

5.6 Proposition. Let A1, A2, B1 and B2 be four non-empty sets such that A1 ∩A2 = ∅
and B1 ∩ B2 = ∅, and let f1 : A1 → B1 and f2 : A2 → B2 be two functions of the sets A1

and A2 into the sets B1 and B2, respectively.
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(a) There exists exactly one function f :

A1 ∪ A2 → B1 ∪ B2 such that f|A1
= f1

and f|A2
= f2.

(b) If the functions f1 : A1 → B1 and f2 :

A2 → B2 are injective, then the function
f : A1 ∪A2 → B1 ∪ B2 is also injective.

(c) If the functions f1 : A1 → B1 and
f2 : A2 → B2 are surjective, then the
function f : A1 ∪ A2 → B1 ∪ B2 is also
surjective.

A1

A2

f1

f2

B1

B2

(d) If the functions f1 : A1 → B1 and f2 : A2 → B2 are bijective, then the function
f : A1 ∪A2 → B1 ∪ B2 is also bijective.

Proof. (a) follows from Proposition 5.5.

(b) Let f(x) = f(x ′) for two elements x and x ′ of the set A := A1 ∪ A2. Then the elements
x and x ′ are either both contained in the set A1 or in the set A2 (otherwise, we have f(x) =

f(x ′) ∈ B1 ∩ B2 = ∅, a contradiction).

If the elements x and x ′ are both contained in the set A1, then we have

f(x) = f1(x) and f(x ′) = f1(x
′)

implying that f1(x) = f1(x
′). Since the function f1 : A1 → B1 is injective, we get x = x ′.

The same reasoning holds for the case that the elements x and x ′ are both contained in the
set A2. Hence, the function f : A1 ∪A2 → B1 ∪ B2 is injective.

(c) follows from Proposition 5.5.

(d) follows from (b) and (c). 2

6 Functions and Equivalence Relations

In the present section we will explain the relation between functions and equivalence relations.
We start by recalling some basic facts about equivalence relations. For more details see Unit
Direct Products [Garden 2020b].

6.1 Definition. Let A be a non-empty set, and let ∼ be a relation on the set A.

(a) The relation ∼ is called an equivalence relation if it is reflexive, symmetric and
transitive.

(b) Let ∼ be an equivalence relation, and let x be an element of the set A. The set

Ax := {z ∈ A | z ∼ x}

is called an equivalence class with respect to the equivalence relation ∼.

(c) The quotient of the set A with respect to the equivalence relation ∼ is the
set

�A := {Ax | x ∈ A}.
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It is denoted by �A or by A/ ∼. The elements Ax of the set �A = A/ ∼ often are denoted
by �x := Ax.

French / German. Equivalence relation = Relation d’équivalence = Äquivalenzrelation.
Equivalence class = Classe d’équivalence = Äquivalenzklasse.

6.2 Proposition. Let A be a set, and let ∼ be an equivalence relation on the set A. Let
x and y be two elements of the set A, and let Ax and Ay be the equivalence classes of
the elements x and y, respectively.

(a) The element x is contained in the set Ax.

(b) We have
x ∼ y if and only if Ax = Ay.

(c) We have Ax = Ay or Ax ∩Ay = ∅.

(d) We have A =
∪

x∈A Ax.

Proof. For a proof see Unit Direct Products [Garden 2020b]. 2

6.3 Proposition. Let A be a set, and let ∼ be an equivalence relation on the set A. For
each element x of the set A, let

�x := {z ∈ A | z ∼ x}

be the equivalence class defined by the element x (Definition 6.1). Define the function
f : A → �A from the set A into the set �A of the equivalence classes of the set A by f : x 7→ �x.

Then the function f : A → �A is surjective.

Proof. The proof is obvious. 2

6.4 Remark. An equivalence class can be understood as the subset of all elements of a
set A sharing a specific property. For example, in a set A of red, blue and green balls, the
sets R, B and G of red, blue and green balls, respectively are the equivalence classes with
respect to the equivalence relation “color”.

The function f : A → �A of Proposition 6.3 does nothing else than attributing to each ball
(element of the set A) its color (equivalence class).

6.5 Proposition. Let f : A → B be a function from a set A into a set B, and let ∼ be
an equivalence relation on the set A. Suppose that the function f : A → B fulfills the
condition

f(x) = f(x ′) for all x, x ′ ∈ A with x ∼ x ′.

For an element x of the set A, let �x := {z ∈ A | z ∼ x} be the equivalence class defined by
the element x.

Then we may define a function α : �A → B from the set �A of the equivalence classes of
the set A into the set B by α : �x 7→ f(x).

Proof. The crucial point of the definition of the function α : �x 7→ f(x) is the fact that we
define the value α(�x) by one element x of the set �x.
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If �x = �y and if f(x) ̸= f(y), then we get the contradiction

α(�x) = f(x) ̸= f(y) = α(�y) = α(�x).

Hence, we have to show that the equation �x = �y implies the equation α(�x) = α(�y): For,
suppose that �x = �y. Then we have x ∼ y implying that

α(�x) = f(x) = f(y) = α(�y).

2

6.6 Definition. Let f : A → B be a function from a set A into a set B, and let ∼ be an
equivalence relation on the set A. For an element x of the set A, let �x := {z ∈ A | z ∼ x}

be the equivalence class defined by the element x.

The function α : �A → B from the set �A of the equivalence classes of the set A into the
set B defined by α : �x 7→ f(x) is called well defined if we have

f(x) = f(y) for all x, y ∈ A with x ∼ y.

French / German. Well defined = Bien défini = Wohldefiniert.

6.7 Proposition. Let f : A → B be a function from a set A into a set B. For two elements
x and y of the set A, set

x ∼ y if and only if f(x) = f(y).

(a) The relation ∼ is an equivalence relation on the set A.

(b) For an element x of the set A, let �x := {z ∈ A | z ∼ x} be the equivalence class defined
by the element x.

Then the function α : �A → B from the set �A of the equivalence classes of the set A into
the set B defined by α : �x 7→ f(x) is well defined and injective.

Proof. (a) Let x, y and z be some elements of the set A. Since f(x) = f(x), we have x ∼ x.
If x ∼ y, then we have f(x) = f(y) implying that f(y) = f(x), hence we have y ∼ x. If x ∼ y

and y ∼ z, then we have f(x) = f(y) and f(y) = f(z) implying that f(x) = f(z), hence we have
x ∼ z.

(b) Let x and y be two elements of the set A such that x ∼ y. By definition of the equivalence
relation ∼, we have f(x) = f(y). It follows that the function α : �A → B is well defined.

If α(�x) = α(�y), then we have f(x) = f(y) implying that x ∼ y. It follows that �x = �y (Proposition
6.2). Hence, the function α : �A → B is injective. 2

7 Equivalent Sets

Definition of equivalent sets:
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7.1 Definition. Two sets A and B are called equivalent if there exists a bijective func-
tion f : A → B from the set A onto the set B. If the sets A and B are equivalent, we write
A ∼ B.

French / German. Equivalent = Équivalent = Äquivalent.

7.2 Proposition. Let A, B and C be three sets.

(a) We have A ∼ A (reflexivity).

(b) If A ∼ B, then we have B ∼ A (symmetry).

(c) If A ∼ B and B ∼ C, then we have A ∼ C (transitivity).

Proof. (a) The function id : A → A defined by id : x 7→ x is bijective, hence we have A ∼ A.

(b) If A ∼ B, then there exists a bijective function f : A → B from the set A onto the set B. It
follows that f−1 : B → A is a bijective function from the set B onto the set A implying that
B ∼ A.

(c) If A ∼ B and B ∼ C, then there exist two bijective functions f : A → B and g : B → C from
the sets A and B onto the sets B and C, respectively. It follows from Proposition 4.6 that the
function g ◦ f : A → C is a bijective function from the set A onto the set C implying that
A ∼ C. 2

7.3 Remark. Note that ∼ has the properties of an equivalence relation insofar as it is
reflexive, symmetric and transitive, but it is not an equivalence relation: It is not defined
on a set, since the set of all sets does not exist (see Unit Universe [Garden 2020a]).
However, if we restrict ∼ on a set A, then ∼ is an equivalence relation on the set A.

How to Make two Sets Disjoint:

7.4 Proposition. Let A and B be two non-empty sets. Then there exist two sets A ′ and
B ′ fulfilling the following conditions:

(i) The sets A and A ′ are equivalent.

(ii) The sets B and B ′ are equivalent.

(iii) We have A ′ ∩ B ′ = ∅.

Proof. Let 0 := ∅, let 1 := {0} = {∅}, and let A ′ := A× {0} and B ′ := B× {1}.

The functions α : A → A ′ and β : B → B ′ defined by α(a) := (a, 0) and β(b) := (b, 1) for all
elements a and b of the sets A and B, respectively are obviously bijective. Hence, the sets A

and A ′ are equivalent, and the sets B and B ′ are equivalent.

It follows from 0 ̸= 1 that the pairs (a, 0) and (b, 1) are different for all elements a and b of
the sets A and B, respectively, that is, A ′ ∩ B ′ = ∅. 2

In the proof of Proposition 7.6 we will make use of the axiom of foundation:

7.5 Axiom. (ZFC-7: Axiom of Foundation) Every non-empty set A contains an el-
ement a which is element minimal with respect to the set A, that is, an element a such
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that
a ∩A = ∅.

For more details see Unit Universe [Garden 2020a].

7.6 Proposition. Let A and B be two non-empty sets. Then there exists a set B ′ fulfilling
the following conditions:

(i) The sets B and B ′ are equivalent.

(ii) We have A ∩ B ′ = ∅.

Proof. Let B ′ := B× {A}. Obviously, the function β : B → B ′ defined by β(b) := (b,A) for
all elements b of the set B is bijective. Note that, by Definition 2.1, we have

(b,A) =
{
b, {b,A}

}
.

Assume that A∩B ′ ̸= ∅. Then there exists an element a of the set A and an element b ′ = (b,A)

of the set B ′ such that a = b ′. Set

A0 := A, A1 := {b,A} and A2 := b ′ = (b,A) =
{
b, {b,A}

}
= {b,A1}.

It follows that

A0 = A ∈ {b,A} = A1, A1 ∈ {b,A1} = A2 and A2 = b ′ = a ∈ A = A0.

Let Z := {A0, A1, A2}. Then we have

A2 ∈ A0 ∩ Z, A0 ∈ A1 ∩ Z and A1 ∈ A2 ∩ Z,

in contradiction to the axiom of foundation (Axiom 7.5) stating that there exists an element
z of the set Z such that z ∩ Z = ∅. 2

Historical Notes:

Equivalent sets have been introduced by Georg Cantor:

Wenn zwei wohldefinirte Mannigfaltigkeiten M und N sich eindeutig und vollständig,
Element für Element, einander zuordnen lassen [...], so möge für das Folgende die Aus-
drucksweise gestattet sein, dass diese Manningfaltigkeiten gleiche Mächtigkeit haben, oder
auch, dass sie äquivalent sind.

See [Cantor 1878, p. 242].

If a well-defined set M can be mapped element-wise onto another well-defined set N and
vice versa [...], it may be allowed to say that these sets have the same cardinality or,
equivalently, that they are equivalent.

(Translation by the author.)

8 Notes and References

One of the early books about set theory is Grundzüge der Mengenlehre by Felix Hausdorff
[Hausdorff 1914]. It is still a good source of inspiration.
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