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1 Introduction

The present unit is part of the walk The Axioms of Zermelo and Fraenkel.

The present unit deals with two important concepts of mathematics: The first concept is the
direct product

A× B := {(a, b) | a ∈ A, b ∈ B}

of two sets A and B.

The second concepts is the equivalence relation which plays a crucial role in almost all
branches of mathematics.

Ordered pairs (see Section 3):

A set {a, b} consists of two elements a and b where the order of the two elements a and b does
not play any role. In fact, we have {a, b} = {b, a}.

The main property of an ordered pair (a, b) is to introduce an order and to distinguish between
the two pairs (a, b) and (b, a) if a ̸= b. The challenge is to find a definition of the pair (a, b)

within the set-theoretical framework of Zermelo and Fraenkel (for details about this framework
see Unit Universe [Garden 2020a]).

A good solution for this problem is the definition

(a, b) :=
{
a, {a, b}

}
(Definition 3.1).

The main property of ordered pairs is the fact that

(a, b) = (c, d) if and only if a = c and b = d (Theorem 3.3).

The direct product of two sets (see Section 4):

The direct product of two sets A and B is the set

A× B := {(a, b) | a ∈ A, b ∈ B}.

The formal definition is given in Definition 4.1. Elementary properties of the direct product
are equations of the form

(A ∪ B)× C = (A× C) ∪ (B× C) and

(A ∩ B)× C = (A× C) ∩ (B× C).

which are explained in Proposition 4.6.

Relations (see Section 5):

Relations are used to express that two elements (or two sets) x and y are related by a property,
for example x < y or y = x2 or x ⊆ y. In everyday life two persons X and Y may be related if
X is the father of Y or if X and Y are brothers. For example, if we have

A := N and B := {1, 2, 3, 4, 5, 6},

https://www.math-garden.com/walk/zfc-axioms
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the relation a is a divisor of b can be expressed by the following subset R of the direct product
A× B = N× {1, 2, 3, 4, 5, 6}:

R = {(1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 4), (2, 4), (4, 4), (1, 5), (5, 5), (1, 6), (2, 6), (3, 6), (6, 6)}.

There are various types of relations. The most important are:

Functions: A function f : A → B is a relation R, that is, a subset of the direct product A×B

such that for each element x of the set A there exists exactly one element y of the set B such
that

(x, y) ∈ R.

We set y := f(x). Functions are explained in detail in Unit Functions [Garden 2020c].

Order relations: Typical order relations are the subset relation ⊆ on a set of sets or the
relation ⩽ on a set of numbers. They are discussed in detail in Unit Ordered Sets [Garden
2020d].

Equivalence relations: They are discussed in detail in Section 6.

Equivalence relations and partitions (see Section 6):

Let us consider the following example:
We have six balls, three of them are blue,
two of them are red, and one ball is
green.

Then we can partion our set of six balls
into three pairwise disjoint sets of blue,
red and green balls, respectively.

red

blue

green

More generally, we have a set A and a set P of properties such that each element x of the set
A has exactly one property p(x) of the set P. This idea can be expressed via an equivalence
relation: Two elements x and y (for example, two balls) are called equivalent if and only if they
have the same property p (for example, if they have the same color). The set of the elements
with a same property p (for example, all red balls) form a so-called equivalence class.

An equivalence relation can also be expressed without explicitly mentioning the property p.
This is done as follows: For a set A we call a relation ∼ between the elements of the set A an
equivalence relation if the following conditions are fulfilled:

The relation ∼ is reflexive, that is, we have x ∼ x for all elements x of the set A.

The relation ∼ is symmetric, that is, the relation x ∼ y implies the relation y ∼ x for all
elements x and y of the set A.

The relation ∼ is transitive, that is, the relations x ∼ y and y ∼ z imply the relation x ∼ z for
all elements x, y and z of the set A (Definition 6.1).

For an equivalence relation ∼ on a set A and an element x of the set A the set

Ax := {z ∈ A | z ∼ x}

is called an equivalence class (Definition 6.1).
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Equivalence classes have the following two important properties:

Ax = Ay or Ax ∩Ay = ∅ for all x, y ∈ A and A =
∪
x∈A

Ax,

as shown in Proposition 6.4. In other words, the equivalence classes of an equivalence relation
define a so-called partition (see Definition 6.5), and partitions define equivalence relations
(Theorem 6.7).

This is explained in detail in Section 6. A good example for the use of equivalence classes is the
definition of the rational numbers based on the integers. This is explained in Unit Rational
Numbers [Garden 2020e].

2 Background

We will define direct products and relations within the framework of the axioms of Zermelo
and Fraenkel. We suppose that the reader is familiar with the following results (for more
details see Unit Universe [Garden 2020a] and Unit Unions [Garden 2020b]):

2.1 Remark. We recall the following axioms of Zermelo and Fraenkel:

(a) Axiom of extension: Two sets A and B are equal if and only if

A ⊆ B and B ⊆ A

(see Unit Universe [Garden 2020a]).

(b) Axiom of specification: Let A be a set, and let φ(x) be a sentence containing the
variable x.a Then the sets

{x ∈ A | φ(x)} and {x ⊆ A | φ(x)}

exist (see Unit Universe [Garden 2020a]).

(c) Axiom of pairing: Let A and B be two sets. Then the sets {A} and {A,B} exist (see
Unit Unions [Garden 2020b]).

(d) Axiom of unions: Let A be a set of sets. Then the union A :=
∪

X∈A X exists (see
Unit Unions [Garden 2020b]).

(e) Axiom of power:Let A be a set. Then the power set of the set A, that is, the set of all
subsets of the set A exists (see Unit Unions [Garden 2020b]).

aFor the definition of a sentence see Unit Universe [Garden 2020a].

In addition, we will make use of the following result:

2.2 Proposition. (a) Let A and B be two sets. Then the union A ∪ B exists.

(b) Let A and B be two sets. Then the intersection A ∩ B exists.

(c) Let A be a non-empty set of sets. Then the intersection A :=
∩

X∈A X exists.

Proof. (a) The assertion follows from the axiom of pairing and the axiom of unions (see Unit
Unions [Garden 2020b]).

(b) and (c) follows from the axiom of specification (see Unit Unions [Garden 2020b]). 2
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3 Ordered Pairs

Definition of an Ordered Pair:

3.1 Definition. Let a and b be two sets.

The ordered pair (a, b) is defined by (a, b) :=
{
{a}, {a, b}

}
.

French / German. Ordered pair = Paire ordonnée = Geordnetes Paar.

Note that the existence of the set (a, b) :=
{
{a}, {a, b}

}
follows from the axiom of pairing (see

Remark 2.1).

Elementary Properties of Ordered Pairs:

3.2 Proposition. Let a, b, c and d be some sets.

(a) If {a} = {b}, then we have a = b.

(b) If {a} = {b, c}, then we have a = b = c.

(c) If {a, b} = {c, d}, then we have a = c and b = d or a = d and b = c.

(d) If
{
{a}, {a, b}

}
=

{
{c}, {c, d}

}
, then we have a = c and b = d.

Proof. (a) to (c) follow directly from the axiom of extension (see Remark 2.1).

(d) Suppose that
{
{a}, {a, b}

}
=

{
{c}, {c, d}

}
. It follows from (c) that {a} = {c} and {a, b} = {c, d}

(Case 1) or that {a} = {c, d} and {a, b} = {c} (Case 2).

Case 1. It follows from (a) that a = c. Hence, we get from (c) that b = d.

Case 2. It follows from (b) that a = c = d and a = b = c implying that a = b = c = d. 2

3.3 Theorem. Let a and b be two sets.

(a) If a = b, then we have (a, b) = (a, a) =
{
{a}

}
.

(b) If a ̸= b, then we have (a, b) ̸= (b, a).

(c) Let a, a ′, b and b ′ be four sets. Then we have

(a, b) = (a ′, b ′) if and only if a = a ′ and b = b ′.

(d) Suppose that the sets a and b are elements of the sets A and B, respectively. Then
the ordered pair (a, b) is an element of the set P

(
P(A ∪ B)

)
.

Proof. (a) We have
(a, a) =

{
{a}, {a, a}

}
=

{
{a}, {a}

}
=

{
{a}

}
.

(b) Let a ̸= b. Assume that (a, b) = (b, a). Then we have
{
{a}, {a, b}

}
=

{
{b}, {a, b}

}
. It

follows from Proposition 3.2 that a = b, a contradiction.

(c) If a = a ′ and b = b ′, then we have

(a, b) =
{
{a}, {a, b}

}
=

{
{a ′}, {a ′, b ′}

}
= (a ′, b ′).

Conversely, suppose that (a, b) = (a ′, b ′). By definition of ordered pairs, it follows that{
{a}, {a, b}

}
=

{
{a ′}, {a ′, b ′}

}
. It follows from Proposition 3.2 that a = a ′ and b = b ′.
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(d) Since the sets a and b are elements of the set A ∪ B, we have

{a} ⊆ A ∪ B and {a, b} ⊆ A ∪ B.

It follows that the sets {a} and {a, b} are elements of the power set P(A ∪ B). Hence, the set
(a, b) =

{
{a}, {a, b}

}
is a subset of the set P(A∪B) implying that the pair (a, b) is an element

of the power set P
(
P(A ∪ B)

)
. 2

Historical Note:

The use of ordered pairs goes back to analytical geometry where the pair (x, y) is used to
describe a point in the real plane by coordinates.

The definition of an ordered pair in the context of the axioms of Zermelo and Fraenkel (see
Unit Universe [Garden 2020a]) as stated in Definition 3.1 is due to Casimir Kuratowski:

Nous terminons cette note par une remarque suivante sur la notion de paire ordonnée.

Soit A un ensemble composé de deux éléments a et b. Il n’existe que deux classes, qui
établissnet un ordre dans A à savoir:(

(a, b), (a)
)

et
(
(a, b), (b)

)
.

[...]

Definition V. La classe
(
(a, b), (a)

)
est une paire ordonnée dont a est le premier élément

et b le second.

See [Kuratowski 1921, p. 171].

We close this note with the following remark about the notion of an ordered pair:

Let A be a set consisting of two elements a and b. There are only two classes which
establish an order on A, namely:(

(a, b), (a)
)

et
(
(a, b), (b)

)
.

[...]

Definition V. The set
(
(a, b), (a)

)
is called an ordered pair where a is the first element

and b the second.

(Translation by the author.)

Note that Kuratowski uses the brackets (. . .) for {. . .}.

An earlier definition of an ordered pair in the same spirit is due to Felix Hausdorff:

Übrigens läßt sich, wenn man will, der Begriff des geordneten Paares (a, b) auf den
Mengenbegriff zurückführen. Sind 1, 2 zwei voneinander wie von a und b verschiedene
Elemente, so hat das Paar von Paaren{

{a, 1}, {b, 2}
}

genau die formalen Eigenschaften des geordneten Paares (a, b), nämlich die Unver-
tauschbarkeit von a und b im Falle der Verschiedenheit beider Elemente. [...]

See [Hausdorff 1914, p. 32].
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By the way, if you want, the notion of an ordered pair (a, b) can be attributed to the
notion of sets. If 1 and 2 are two different elements which are also different from a and
b, then the pair of pairs {

{a, 1}, {b, 2}
}

has exactly the formal properties of the ordered pair (a, b), namely the non-commutativity
of a and b if they are distinct. [...]

(Translation by the author.)

The definition of Hausdorff has the small disadvantage that the elements 1 and 2 depend on
the elements a and b due to the condition

{a, b} ∩ {1, 2} = ∅.

4 The Direct Product of Two Sets

Definition of the Direct Product:

4.1 Definition. Let A and B be two sets. Set

A× B := {x ∈ P
(
P(A ∪ B)

)
| ∃ a ∈ A ∃ b ∈ B s.t. x = (a, b)}.

(a) The set A × B is called the direct product of the sets A and B or, equivalently,
the Cartesian product of the sets A and B.

(b) We write A× B := {(a, b) | a ∈ A and b ∈ B} for short.

French / German. Direct product = Produit direct = Direktes Produkt.

Note that it follows from Proposition 2.2 that the set A ∪ B exists. It follows from the axiom
of powers (see Remark 2.1) that the power set P

(
P(A ∪ B)

)
exists. It follows from the axiom

of specification (see Remark 2.1) that the set A × B exists for all sets A and B. Finally, it
follows from Theorem 3.3 that the pairs (a, b) are contained in the direct product A× B.

4.2 Example. Let A := {a, b} and B := {c, d}. Then we have

A× B = {(a, c), (a, d), (b, c), (b, d)}.

When is A× B = ∅?

4.3 Proposition. Let A and B be two sets.

(a) We have A = ∅ or B = ∅ if and only if A× B = ∅.

(b) We have A ̸= ∅ and B ̸= ∅ if and only if A× B ̸= ∅.

Proof. (a) Step 1. ⇒: Suppose that A = ∅ or B = ∅. Assume that A × B ̸= ∅. Then there
exists an element a of the set A and an element b of the set B such that the pair (a, b) is
contained in the set A× B, in contradiction to the assumption that A = ∅ or B = ∅.
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Step 2. ⇐: Suppose that A × B = ∅. Assume that A ̸= ∅ and B ̸= ∅. Then there exist an
element a of the set A and an element b of the set B. It follows that the element (a, b) is
contained in the set A× B, in contradiction to the assumption that A× B = ∅.

(b) follows from (a). 2

Elementary Properties of the Direct Product:

4.4 Proposition. Let A, B, C and D be four sets, and suppose that we have A ̸= ∅ and
B ̸= ∅. Then we have

A ⊆ C and B ⊆ D if and only if A× B ⊆ C×D.

Proof. Step 1. Suppose that the set A is a subset of the set C and that the set B is a
subset of the set D. Then the set A× B is a subset of the set C×D:

For, let (x, y) be an element of the direct product A × B. It follows that the element x is
contained in the set A and that the element y is contained in the set B.

Since the set A is a subset of the set C and since the set B is a subset of the set D, it follows
that the element x is contained in the set C and that the element y is contained in the set D

implying that the pair (x, y) is contained in the set C×D.

Step 2. Suppose that the set A×B is a subset of the set C×D. Then the set A is a subset
of the set C and that the set B is a subset of the set D:

Let x be an element of the set A. Since B ̸= ∅, there exists an element y of the set B. It follows
that the the pair (x, y) is an element of the direct product A × B. Since the set A × B is a
subset of the set C×D, the pair (x, y) is contained in the direct product C×D implying that
the element x is contained in the set C. Hence, the set A is a subset of the set C.

In the same way it follows that the set B is a subset of the set D. 2

4.5 Proposition. Let A, B, C and D be four sets.

(a) Suppose that the sets A, B, C and D are all non-empty. Then we have

A× B = C×D if and only if A = C and B = D.

(b) Suppose that A = ∅ or B = ∅. Then we have

A× B = C×D if and only if C = ∅ or D = ∅.

Proof. (a) The assertion follows from Proposition 4.4.

(b) The assertion follows from Proposition 4.3. 2

4.6 Proposition. Let A, B, C and D be four sets.

(a) We have (A ∪ B)× C = (A× C) ∪ (B× C).

(b) We have (A ∩ B)× C = (A× C) ∩ (B× C).

(c) We have

(A ∩ B)× (C ∩D) = (A× C) ∩ (B×D) = (A×D) ∩ (B× C).
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(d) We have

(A ∪ B)× (C ∪D) = (A× C) ∪ (A×D) ∪ (B× C) ∪ (B×D).

(e) We have (A \ B)× C = (A× C) \ (B× C).

Proof. (a) Step 1. We have (A ∪ B)× C ⊆ (A× C) ∪ (B× C):

For, let (x, y) be an element of the set (A∪B)×C. Then the element x is an element of the set
A∪B, and the element y is an element of the set C. It follows that the pair (x, y) is contained
in the set (A× C) ∪ (B× C).

Step 2. We have (A× C) ∪ (B× C) ⊆ (A ∪ B)× C:

For, let (x, y) be an element of the set (A × C) ∪ (B × C). Then the element x is an element
of the set A ∪ B, and the element y is an element of the set C. It follows that the pair (x, y)

is contained in the set (A ∪ B)× C.

(b) The proof is as in (a).

(c) Step 1. We have (A ∩ B)× (C ∩D) ⊆ (A× C) ∩ (B×D):

For, let (x, y) be an element of the set (A∩B)× (C∩D). Then the element x is an element of
the set A∩B, and the element y is an element of the set C∩D. It follows that the pair (x, y)

is contained in the set (A× C) ∩ (B×D).

Step 2. We have (A× C) ∩ (B×D) ⊆ (A ∩ B)× (C ∩D):

For, let (x, y) be an element of the set (A×C)∩ (B×D). Then the element x is an element of
the set A∩B, and the element y is an element of the set C∩D. It follows that the pair (x, y)

is contained in the set (A ∩ B)× (C ∩D).

Step 3. The equation (A ∩ B)× (C ∩D) = (A×D) ∩ (B× C) follows from Step 1 and 2 since
A ∩ B = B ∩A.

(d) Step 1. We have (A ∪ B)× (C ∪D) ⊆ (A× C) ∪ (A×D) ∪ (B× C) ∪ (B×D):

For, let (x, y) be an element of the set (A∪B)× (C∪D). Then the element x is an element of
the set A∪B, and the element y is an element of the set C∪D. It follows that the pair (x, y)

is contained in the set
(A× C) ∪ (A×D) ∪ (B× C) ∪ (B×D).

Step 2. We have (A× C) ∪ (A×D) ∪ (B× C) ∪ (B×D) ⊆ (A ∪ B)× (C ∪D):

For, let (x, y) be an element of the set (A×C)∪ (A×D)∪ (B×C)∪ (B×D). Then the element
x is an element of the set A ∪ B, and the element y is an element of the set C ∪D. It follows
that the pair (x, y) is contained in the set (A ∪ B)× (C ∪D).

(e) Step 1. We have (A \ B)× C ⊆ (A× C) \ (B× C):

For, let (x, y) be an element of the set (A \ B) × C. Since the set A \ B is a subset of the set
A, the pair (x, y) is contained in the set A× C. Since the element y is contained in the set C

and since the element x is not contained in the set B, the pair (x, y) is not contained in the
set B× C. It follows that the pair (x, y) is contained in the set (A× C) \ (B× C).

Step 2. We have (A× C) \ (B× C) ⊆ (A \ B)× C:

For, let (x, y) be an element of the set (A× C) \ (B× C). Then the element x is contained in
the set A \ B, and the element y is contained in the set C. It follows that the pair (x, y) is
contained in the set (A \ B)× C. 2
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Historical Note:

The direct product of two sets has been defined by Georg Cantor (see the historical remark of
Bourbaki in [Bourbaki 2006, p. E.IV 41, footnote 2]:

Jedes Element m einer Menge M lässt sich mit jedem Elemente n einer anderen Menge
N zu einem neuen Elemente (m,n) verbinden; für die Menge aller dieser Verbindungen
(m,n) setzen wir die Bezeichnung (M.N) fest. Wir nennen sie die Verbindungsmenge von
M und N.

See [Cantor 1895, p. 485].

Each element m of a set M can be combined with an element n of another set N to get
a new element (m,n); the set of all of these combinations (m,n) is denoted by (M.N).
We call it the combination set of M and N.

(Translation by the author.)

The combination (M.N) is the direct product M×N.

In his axiomatic foundation [Zermelo 1908] Zermelo gives a definition of the direct product of
two sets based on the existing axioms. So he needs a formal definition of the pair (m,n) as a
specific set whose existence is guaranteed by the existing axioms. His solution is to define the
direct product of two sets A and B only if the sets A and B are disjoint. Then the definition
(a, b) := {a, b} fulfills the important property that

(a, b) = (a ′, b ′) if and only if a = a ′ and b = b ′ for all a, a ∈ A and b, b ′ ∈ B.

Es sei nun T eine Menge, deren Elemente M,N,R, . . . lauter (untereinander element-
fremde) Mengen sein mögen, [...]. Alle Untermengen S1 ∈ ST [=

∪
X∈T X], welche mit

jedem Elemente von T genau ein Element gemein haben, bilden also nach III [axiom of
specification] die Elemente einer Menge P = PT , welche [...] als das Produkt der Mengen
M,N,R, . . . bezeichnet werden soll. [...]

See [Zermelo 1908, p. 266].

Now let T be a set whose elements M,N,R, . . . are various (mutually disjoint) sets, [...].
All subsets S1 of ST [=

∪
X∈T X] that have exactly one element in common with each

element of T then are, according to Axiom III [axiom of specification], the elements of a
set P = PT , which [...] will be called [...] the product of the sets M,N,R, . . .. [...]

See [Zermelo 1967, p. 204].

A definition of the direct product for not necessarily mutually disjoint sets is for example
introduced in the Grundzüge der Mengenlehre of Felix Hausdorff [Hausdorff 1914, pp. 36 -
37] based on the ordered pairs defined by Hausdorff (see Historical notes of Section 3).

5 Relations

Definition of a Relation:

5.1 Definition. Let A and B be two sets.

(a) Every subset R of the direct product A×B is called a relation on the direct product
A× B. More precisely, the set R is called a binary relation.
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(b) If A = B, a relation R on the direct product A × B = A × A is called a relation on
the set A.

(c) Let R ⊆ A×B be a relation. Two elements a of the set A and b of the set B are called
related with respect to the relation R if the pair (a, b) is contained in the set R.

If the elements a and b are related with respect to the relation R, we write a R b.

(d) Often we denote a relation R by a symbol like ∗ or ∼. We then speak of the relations
∗ or ∼, and we write x ∗ y or x ∼ y if the elements x and y are related with respect to the
relation ∗ or ∼, respectively.

French / German. Relation = Relation = Relation.

Relations are very common in everyday life: If A and B are two sets of persons, two persons
a and b of the set A and of the set B, respectively may be called related if they are friends, if
they are married of if they belong to the same family.

5.2 Examples. Let A and B be two sets, and let R be a relation on the direct product
A× B.

(a) If R = ∅, there are no two elements a of the set A and b of the set B that are related
with respect to the relation R.

(b) If R = A × B, any two elements a of the set A and b of the set B are related with
respect to the relation R.

(c) Let R := {(a, b) ∈ A×A | a = b}. Then we have

a R b if and only if a = b.

(d) Let P := P(A) be the power set of the set A, and let R := {(x, X) ∈ A × P | x ∈ X}.
Then we have

x R X if and only if x ∈ X.

(e) Let X be a set, let P := P(X) be the power set of the set X, and let

R := {(X, Y) ∈ P× P | X ⊆ Y}.

Then we have
X R Y if and only if X ⊆ Y.

Important Types of Relations:

5.3 Definition. Let A be a set, and let ∗ be a relation on the set A.

(a) The relation ∗ is called reflexive if we have x ∗ x for all elements x of the set A.

(b) The relation ∗ is called symmetric if we have x∗y if and only if y∗x for all elements
x and y of the set A.

(c) The relation ∗ is called antisymmetric if x∗y and y∗x implies x = y for all elements
x and y of the set A.
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(d) The relation ∗ is called transitive if for each three elements x, y and z of the set A

the relations x ∗ y and y ∗ z imply x ∗ z.

French / German. Reflexive = Réflexive = Reflexif; Symmetric = Symétrique = Sym-
metrisch; Antisymmetric = Antisymétrique = Antisymmetrisch; Transitive = Transitive =
Transitif.

5.4 Examples. We consider the relations introduced in Example 5.2.

(a) The relations = and ⊆ are reflexive.

(b) The relation = is symmetric.

(c) The relation ⊆ is antisymmetric.

(d) The relations = and ⊆ are transitive.

Historical Note:

An early example of an abstract definition of relations is contained in Guiseppe Peano’s Prin-
ciples of Arithmetics:

2. Sint x, y entia quaecumque; systema ex ente x et ex ente y compositum ut novum
ens consideramus, et signo (x, y) indicamus; similiterque si entium numerus maior fit.
Sit α propositio indeterminata continens x, y; tunc [(x, y)ε]α significat classem entibus
(x, y) constitutam, quae conditioni α satisfaciunt. [...]

See [Peano 1889a, p. xii].

2. Let x and y be any objects whatsoever; we consider as a new object the system
composed of the object x and of the object y, and we denote it by the sign (x, y); and
similarly if we have a greater number of objects. Let α be a proposition containing the
indeterminates x and y; then [(x, y)ε]α means the class composed of the objects (x, y)

that satisfy the condition α. [...]

See [Peano 1889b, p. 90].

In modern terminology the expression of Peano reads as follows:

[(x, y)ε]α := {(x, y) ∈ X× Y | α(x, y)}

where α(x, y) is a sentence.

6 Equivalence Relations and Partitions

The most important relations are functions, equivalence relations and order relations. For
functions see Unit Functions [Garden 2020c]. For order relations see Unit Ordered Sets
[Garden 2020d].

Definition of Equivalence Relations:
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6.1 Definition. Let A be a non-empty set, and let ∼ be a relation on the set A.

(a) The relation ∼ is called an equivalence relation if it is reflexive, symmetric and
transitive.

(b) Let ∼ be an equivalence relation, and let x be an element of the set A. The set

Ax := {y ∈ A | y ∼ x}

is called an equivalence class with respect to the equivalence relation ∼.

(c) The quotient of the set A with respect to the equivalence relation ∼ is the
set

�A := {Ax | x ∈ A}.

It is denoted by �A or by A/ ∼. The elements Ax of the set �A = A/ ∼ often are denoted
by �x := Ax. We have

�A = {�x | x ∈ A}.

French / German. Equivalence relation = Relation d’équivalence = Äquivalenzrelation.

6.2 Examples. Let A := {a, b, c, d}, and suppose that the elements a, b, c and d are
pairwise distinct.

(a) Let a ∼ a, b ∼ b, c ∼ c, d ∼ d, c ∼ d and d ∼ c. Then the relation ∼ is an equivalence
relation with equivalence classes Aa = {a}, Ab = {b} and Ac = Ad = {c, d}.

(b) Let a ∼ a, b ∼ b, c ∼ c, d ∼ d, a ∼ b, b ∼ a, c ∼ d and d ∼ c. Then the relation ∼ is an
equivalence relation with equivalence classes Aa = Ab = {a, b} and Ac = Ad = {c, d}.

6.3 Remarks. (a) Note that an equivalence relation is only defined for a set A. The
reason is that an equivalence relation is a relation on a set A, that is, a subset of the
direct product A×A.

(b) Note that the quotient �A of a set A with respect to an equivalence relation ∼ can be
expressed as follows:

�A =
{
Y ⊆ A | ∃ x ∈ A such that Y = Ax := {y ∈ A | y ∼ x}

}
.

By the axiom of specification (see Remark 2.1), the set �A exists.

Elementary Properties of Equivalence Relations:

6.4 Proposition. Let A be a set, and let ∼ be an equivalence relation on the set A. Let
x and y be two elements of the set A, and let Ax and Ay be the equivalence classes of
the elements x and y, respectively.

(a) The element x is contained in the set Ax.

(b) We have
x ∼ y if and only if Ax = Ay.

(c) We have Ax = Ay or Ax ∩Ay = ∅.
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(d) We have A =
∪

x∈A Ax.

Proof. (a) Since the equivalence relation ∼ is reflexive, we have x ∼ x implying that the
element x is contained in the set Ax.

(b) Step 1. Suppose that x ∼ y. Then we have Ax = Ay:

We first show that the set Ax is a subset of the set Ay: For, let z be an element of the
equivalence class Ax. Then we have z ∼ x. Since x ∼ y and since the equivalence relation ∼

is transitive, it follows that z ∼ y implying that the element z is contained in the set Ay. It
follows that the set Ax is a subset of the set Ay.

Since the relation ∼ is symmetric, it follows from x ∼ y that y ∼ x. As above, one can show
that the set Ay is a subset of the set Ax. Altogether, we have Ax = Ay.

Step 2. Suppose that Ax = Ay. Then we have x ∼ y:

It follows from Ax = Ay that the element y is contained in the set Ax implying that y ∼ x.
Since the relation ∼ is symmetric, it follows that x ∼ y.

(c) Suppose that Ax ∩ Ay ̸= ∅. Then there exists an element z of the set Ax ∩ Ay implying
that z ∼ x and z ∼ y. Since the relation ∼ is symmetric and transitive, it follows that x ∼ y.
By (b), we have Ax = Ay.

(d) is obvious. 2

Definition of a Partition:

6.5 Definition. Let A be a non-empty set, and let C be a set of non-empty subsets of
the set A.

(a) The set C is called a partition of the set A if the following conditions are fulfilled:

(i) We have
∪

C∈C C = A.

(ii) We have C ∩D = ∅ for all elements C and D of the set C such that C ̸= D.

(b) The union A =
∪

C∈C C is called a disjoint union.

French / German. Partition = Partition = Partition. Disjoint Union = Union disjointe =
Disjunkte Vereinigung.

6.6 Example. Let A := {a, b, c, d}, and suppose that the elements a, b, c and d are
pairwise distinct.

Then the sets

C :=
{
{a}, {b}, {c, d}

}
and

D :=
{
{a, b}, {c, d}

}
are two partitions of the set A.

C
a

b

c

d

D
a

b

c

d

Equivalence Relations define Partitions and vice versa:
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6.7 Theorem. Let A be a non-empty set.

(a) Let ∼ be an equivalence relation on the set A. Then the equivalence classes of the set
A with respect to the relation ∼ form a partition of the set A.

(b) Let C be a partition of the set A. For two elements x and y of the set A, define x ∼ y

if and only if there exists an element C of the partition C containing both elements x and
y.

Then the relation ∼ is an equivalence relation on the set A.

The equivalence classes of the relation ∼ are exactly the sets of the partition C.

Proof. (a) follows from Proposition 6.4.

(b) Step 1. The relation ∼ is obviously reflexive.

Step 2. The relation ∼ is obviously symmetric.

Step 3. The relation ∼ is transitive:

For, let x, y and z be three elements of the set A such that x ∼ y and y ∼ z. Then there exist
two sets C and D of the partition C such that the set {x, y} is a subset of the set C and such
that the set {y, z} is a subset of the set D. Since the element y is contained in the sets C and
D, we have C ∩D ̸= ∅ implying that C = D. It follows that the set {x, z} is a subset of the set
C = D, hence we have x ∼ z. 2

6.8 Proposition. (a) Let ∼ be an equivalence relation on a set A, and let B be a subset
of the set A. Then the equivalence relation ∼ induces an equivalence relation on the set
B.

(b) Let C be a partition of a set A, and let B be a subset of the set A. Let

D := {X ∩ B | X ⊆ A and X ∩ B ̸= ∅}.

Then the set D is a partition of the set B.

Proof. The proof is obvious. 2

Equivalence relations are one of the very powerful tools in mathematics. They often allow to
reduce the complexity of the investigation of a set A to the often less complex investigation of
the set �A := {Ax | x ∈ A}.

By the way, in everyday life equivalence relations do also play an important role. For example,
the football players are grouped into football teams. We say that the French national football
team has won the World Cup in 2018 which is much easier than to say that the team of the
players ... has won the World Cup.

Historical Note:

The history of equivalence relations and equivalence classes is rather complicated. In [Asghari
2019], Amir Asghari gives a detailed study of this history based on former research by David
Fowler. We just recall a few points and recommend the lecture of Asghari’s article for further
information.
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Equivalence relations already appear implicitly in Euclid’s elements [Heath 1925]: A famous
example is the parallelism of lines in an affine plane. However, Euclid did not introduce the
concept of an equivalence relation, and he did not explicitly note that parallelism is reflexive or
symmetric (which of course is trivial). However, Euclid has shown that parallelism is transitive:

Straight lines parallel to the same straight line are also parallel to one another.

See [Heath 1925, Section I, 30].

Another standard example, where equivalence relations are implicitly given, is the congruence
of numbers: If n is a natural number, we can define the equivalence relation ∼ on the integers
by defining

a ∼ b :⇔ n is a divisor of a− b.

According to Asghari the first abstract definition of an equivalence relation has been given by
Philip Jourdain, but he called it an isoid relation:

I call a relation which is reflexive, symmetrical and transitive an isoid relation.

See [Jourdain 1912, p. 492].

The terminology of equivalence relations and equivalence classes has been introduced by Hel-
mut Hasse in [Hasse 1926].

The word equivalence has already been used among others by Georg Cantor who calls two sets
A and B equivalent (A ∼ B) if there exists a bijective mapping from the set A onto the set B.
He explicitly shows that the relation ∼ is reflexive, symmetric and transitive:

Zwei Mengen M und N nennen wir äquivalent und bezeichnen dies mit

(4) M ∼ N oder N ∼ M,

wenn es möglich ist dieselben gesetzmäßig in eine deratige Beziehung zu einander zu
setzen, dass jedem Element der einen von ihnen ein und nur ein Element der andern
entspricht. [...]

Jede Menge ist sich selbst äquivalent:

(5) M ∼ M.

Sind zwei Mengen einer dritten äquivalent, so sind sie auch unter einander äquivalent:

(6) aus M ∼ P und N ∼ P folgt M ∼ N.

See [Cantor 1895, p. 482].

Two sets M and N are called equivalent which is denoted by

(4) M ∼ N or N ∼ M

if it is possible to relate these two sets in a way that each element of one set corresponds
to one and only one element of the other set. [...]

Every set is equivalent to itself:

(5) M ∼ M.

If two sets are equivalent to a third set, then they are also equivalent to each other:

(6) it follows from M ∼ P and N ∼ P that M ∼ N.

(Translation by the author.)
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7 Notes and References

I found a lot of interesting information in the book Théorie des ensembles of Bourbaki (see
[Bourbaki 2006] or [Bourbaki 2004]). In particular, there are extensive historical notes.
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