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1 Introduction

The present unit is part of the walk The Axioms of Zermelo and Fraenkel. It introduces
into families of sets, the axiom of substitution and the axiom of choice.

Families and the Axiom of Substitution (see Section 2):

We often use expressions of the form Let
(
Ai

)
i∈I

be a family of sets ... Intuitively, it is clear
what the expression

(
Ai

)
i∈I

means.

However, an axiomatic construction of mathematics brings the need to deduce each mathemat-
ical expression from the founding axioms. Since we use the axiomatic of Zermelo and Fraenkel
(see Unit Universe [Garden 2020a]), we have to define the expression

(
Ai

)
i∈I

as a set:

In the unit Functions [Garden 2020d] we have introduced the functions f : A→ B from a set
A into a set B as a specific set. Hence, we can define a family

(
Ai

)
i∈I

as a function:

More precisely, an index set I is a non-empty set (see Definition 2.2). If A is a set (of sets),
then a family is a function

f : I→ A

from an index set I into the set A. We set Ai := f(i). The function f : I → A is denoted by(
Ai

)
i∈I

(see Definition 2.3).

The advantage of this definition is that we have a formally correct definition of a family within
the axiomatic of Zermelo and Fraenkel. In addition, this definition fits very well to our intuitive
understanding of a family: For two families

(
Ai

)
i∈I

and
(
Bi

)
i∈I

we have(
Ai

)
i∈I

=
(
Bi

)
i∈I

if and only if Ai = Bi for all i ∈ I (Theorem 2.6).

Unfortunately, this definition of a family has also a big disadvantage: The family
(
Ai

)
i∈I

can
only be defined when we have a set A such that

Ai ∈ A for all i ∈ I.

This is a strong restriction: Let us consider the following example: Let
(
Ai

)
i∈I

be a family of
sets, and let C be a further set. Suppose that we want to construct the family

(
Bi

)
i∈I

by

Bi := Ai ∪ C for all i ∈ I.

The expression Bi := Ai ∪ C looks very innocent, but a family
(
Bi

)
i∈I

is a function g : I→ B

into a set B such that
Bi = g(i) for all i ∈ I.

In other words, we need the set B := {Bi | i ∈ I} for the definition of the family
(
Bi

)
i∈I

. In
general, the existence of such a set B will not follow from the axioms of Zermelo and Fraenkel
introduced so far (for more details see Remark 2.7).

The solution of this problem is to introduce a further axiom, namely the axiom of substitution
(Axiom 2.8) which guarantees the existence of the set B. For more details see Section 2.

https://www.math-garden.com/walk/zfc-axioms
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Unions and Intersections of Families (see Section 3):

Let
(
Ai

)
i∈I

be a family of sets, and let A := {Ai | i ∈ I}. We set∪
i∈I

Ai :=
∪

A∈A

A and
∩
i∈I

Ai :=
∩

A∈A

A.

There are various rules to combine unions, intersections and direct products of families of sets:
We have (∪

i∈I

Ai

)
∩
(∪
j∈J

Bj

)
=

∪
(i,j)∈I×J

(Ai ∩ Bj) and

(∩
i∈I

Ai

)
∪
(∩
j∈J

Bj

)
=

∩
(i,j)∈I×J

(Ai ∪ Bj).

See Proposition 3.8.

We have (∪
i∈I

Ai

)
×

(∪
j∈J

Bj

)
=

∪
(i,j)∈I×J

(Ai × Bj) and

(∩
i∈I

Ai

)
×

(∩
j∈J

Bj

)
=

∩
(i,j)∈I×J

(Ai × Bj).

See Proposition 3.9.

If Ai is a subset of a set A for all elements i of an index set I and if Ac
i denotes the complement

A \Ai of the set Ai in the set A, then we have(∪
i∈I

Ai

)c
=

∩
i∈I

Ac
i and

(∩
i∈I

Ai

)c
=

∪
i∈I

Ac
i .

See Proposition 3.10.

The next question that we want to answer is the following: Suppose that we have two families(
Ai

)
i∈I

and
(
Bi

)
i∈I

and functions

fi : Ai → Bi for all i ∈ I.

Does there exist a function
f :

∪
i∈I

Ai → ∪
i∈I

Bi

such that
f(x) = fi(x) for all x ∈ Ai and all i ∈ I?

Obviously, a necessary condition is that

fi(x) = fj(x) for all x ∈ Ai ∩Aj and all i, j ∈ I.

As we will see in Proposition 3.13, this condition is also sufficient.

The Direct Product of arbitrary many Sets (see Section 4):

The definition of families offers the possibility to define the direct product not only for two
sets (as in Unit Unions [Garden 2020b]), but for arbitrary many sets: The intuitive definition
is as follows:
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Let
(
Ai

)
i∈I

be a family of sets. Set∏
i∈I

Ai :=
{
(zi)i∈I | zi ∈ Ai for all i ∈ I

}
.

The expression (zi)i∈I is a family, that is, a function z : I → A from the index set I into the
set A :=

∪
i∈IAi such that

zi = z(i) ∈ Ai for all i ∈ I.

The direct product
∏

i∈IAi therefore becomes∏
i∈I

Ai = {z : I→ A | zi := z(i) ∈ Ai for all i ∈ I}.

This is the content of Definition 4.5.

The Axiom of Choice (see Section 5):

The axiom of choice (Axiom 5.1) looks quite innocent: Given a family
(
Ai

)
i∈I

of non-empty
sets we want to be able to choose one element ai of each set Ai. This requirement sounds
more or less trivial, - one wonders whether we really need a proper axiom for it. Well, we do
need the axiom of choice, but we will discuss the necessity of this axiom only in the unit Well
Ordered Sets [nst-well-ordered-sets] when we will use it to prove a rather surprising
result.

It remains to answer the question how the process of choosing an element ai of each set Ai is
formally defined: The axiom of choice reads as follows:

Let
(
Ai

)
i∈I

be a family of non-empty sets. Then the product∏
i∈I

Ai

is also non-empty.

An element (ai)i∈I of the product
∏

i∈IAi fulfills the requirement

ai ∈ Ai for all i ∈ I.

By definition, the element (ai)i∈I is a function f : I→ ∪
i∈IAi such that

f(i) = ai ∈ Ai for all i ∈ I.

This function f : I→ ∪
i∈IAi is called a choice function (see Theorem 5.3 and Remark 5.4).

Projections (see Section 6):

Let
(
Ai

)
i∈I

be a family of non-empty sets, and let j be an element of the index set I. The
projection

prj :
∏
i∈I

Ai → Aj, (ai)i∈I 7→ aj

chooses the jth component of the element (ai)i∈I (see Definition 6.1).

The geometric meaning of a projections is as follows:
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In the affine plane

A = {(x, y) | x, y ∈ R}

the projections

p = (x, y)x

y

pr2

pr1

pr1 : A→ R, (x, y) 7→ x and

pr2 : A→ R, (x, y) 7→ y

choose the first (resp. the second) coordinate of the point p = (x, y).

Finally, given two families
(
Ai

)
i∈I

and
(
Bi

)
i∈I

we want to extend a family of functions

fi : Ai → Bi for all i ∈ I

to a function
f :

∏
i∈I

Ai → ∏
i∈I

Bi.

This can be done in an obvious way by setting

f : (xi)i∈I 7→ (
f(xi)

)
i∈I
.

For more details see Proposition 6.4.

2 Families and the Axiom of Substitution

Functions:

Throughout this unit functions will play a crucial role. We therefore recall the definition of a
function. For more details see Unit Functions [Garden 2020d].

2.1 Definition. Let A and B be two sets.

(a) A function f : A→ B from the set A into the set B is a triple (f,A, B) where the
set f is a subset of the direct product A× B with the following property:

For each element x of the set A, there is exactly one element y of the set B such that the
pair (x, y) is contained in the set f.

(b) Let f : A→ B be a function from the set A into the set B, and let x be an element of
the set A. The unique element y of the set B such that the pair (x, y) is contained in the
set f is denoted by y = f(x). We also write f : x 7→ y or, equivalently, f : x 7→ f(x).

Families:

2.2 Definition. An index set I is a non-empty set.

French / German. Index set = Ensemble d’indices = Indexmenge.
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2.3 Definition. Let I be an index set, and let A be a non-empty set.

(a) A function f : I→ A is called a family of elements of the set A.

(b) Let f : I→ A be a family of elements of the set A. We set

ai := f(i) ∈ A for all i ∈ I.

Instead of speaking of the family f : I → A, we usually speak of the family (ai)i∈I of
elements of the set A. If we want to emphasize that the objects ai are sets, we often start
with a set A of sets, then we consider a function f : I→ A, and we define Ai := f(i).

French / German. Family = Famille = Familie.

2.4 Remark. Note that a family (ai)i∈I is only defined if there exists a set A such that
the element ai is contained in the set A for all elements i of the set I. Otherwise, the
function f : I→ A is not defined. See also Axiom 2.8 and Theorem 2.11.

Elementary Properties of Families:

For the proof of Theorem 2.6, we will need the following elementary property of functions:

2.5 Proposition. Let A and B be two sets, and let f : A → B and g : A → B be two
functions from the set A into the set B.

Then we have
f = g if and only if f(x) = g(x) for all x ∈ A.

Proof. See Unit Functions [Garden 2020d]. 2

2.6 Theorem. Let I be an index set.

Let (xi)i∈I and (yi)i∈I be two families of elements of a non-empty set A. Then we have

(xi)i∈I = (yi)i∈I if and only if xi = yi for all i ∈ I.

Proof. By definition of a family, there exist two functions f : I→ A and g : I→ A such that

xi = f(i) and yi = g(i) for all i ∈ I.

By Proposition 2.5, we have

(xi)i∈I = (yi)i∈I ⇔ f = g⇔ f(i) = g(i) for all i ∈ I⇔ xi = yi for all i ∈ I.

2

The Axiom of Substitution:

2.7 Remark. Let A and B be two sets. We want to express something like For each set
A of the set A, let BA := A ∪ B.

Unfortunately, this is in general not possible since the definition of the family
(
BA

)
A∈A

requires a function
f : A → {BA | A ∈ A}



2 Families and the Axiom of Substitution 8

from the set A into the set B := {BA | A ∈ A}, but the existence of the set B is not
guaranteed. The axiom of substitution solves this problem.

The axiom of substitution is one of the axioms of Zermelo and Fraenkel. The complete
list of the axioms of Zermelo and Fraenkel is as follows:

ZFC-0: Basic Axiom
ZFC-1: Axiom of Extension
ZFC-2: Axiom of Existence
ZFC-3: Axiom of Specification
ZFC-4: Axiom of Foundation
ZFC-5: Axiom of Pairing
ZFC-6: Axiom of Unions
ZFC-7: Axiom of Powers
ZFC-8: Axiom of Substitution
ZFC-9: Axiom of Choice
ZFC-10: Axiom of Infinity

These axioms are explained in the units Universe [Garden 2020a] (ZFC-0 to ZFC-4),
Unions [Garden 2020b] (ZFC-5 to ZFC-7) and Successor Sets [Garden 2020e] (ZFC-
10). The axiom of substitution (ZFC-8) and the axiom of choice (ZFC-9) are explained
in the present unit (see Axiom 2.8 and Axiom 5.1).

2.8 Axiom. (ZFC-8: Axiom of Substitution or Axiom of Replacement) Let
φ = φ(x, y) be a sentence containing at least the two variables x and y.a

Let A be a set of sets, and suppose that for each set A of the set A, there exists a set B
such that

x ∈ B if and only if φ(x,A).

Then there exists a set B such that

B ∈ B if and only if ∃A ∈ A such that
(
x ∈ B⇔ φ(x,A)

)
.

aSentences are explained in Unit Universe [Garden 2020a]. They express a mathematical property
such that The element x is contained in the set y.

French / German. Axiom of substitution (or axiom of replacement) = Axiome de substi-
tution (or axiome de remplacement) = Ersetzungsaxiom.

2.9 Example. Let C be a set, and let φ = φ(r, S) be the sentence

φ(r, S) := r ∈ S ∪ C.

Let A be a set of sets. For each set A of the set A, the set B := A ∪ C exists (axiom of
unions, see Unit Unions [Garden 2020b]). Note that we have

x ∈ B if and only if φ(x,A) if and only if x ∈ A ∪ C.
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By the axiom of substitution, there exists a set B such that

B ∈ B ⇔ ∃A ∈ A such that
(
x ∈ B⇔ φ(x,A)

)
⇔ ∃A ∈ A such that

(
x ∈ B⇔ x ∈ A ∪ C

)
⇔ ∃A ∈ A such that B = A ∪ C.

We are now able to define the family
(
BA

)
A∈A

via the function f : A → B, f : A 7→ A∪C,
that is,

BA := f(A) = A ∪ C for all A ∈ A.

2.10 Remark. The axiom of substitution (Axiom 2.8) can also be formulated as follows:

(a) A sentence φ(x, y) in the two variables x and y is called functional if for each element
x there exists exactly one element y.

(b) An example for a functional sentence is y = x ∪ a for a given set a.

(c) Axiom of Substitution. For each functional sentence φ = φ(x, y) and for each set
A there exists a set B such that

y ∈ B if and only if ∃ x ∈ A : φ(x, y).

2.11 Theorem. Let I be an index set, and let φ = φ(x, i) be a sentence. Suppose that
for each element i of the set I there exists a set B such that

x ∈ B if and only if φ(x, i).

(a) Then there exists a family
(
Bi

)
i∈I

such that

x ∈ Bi if and only if φ(x, i).

(b) The set B := {Bi | i ∈ I} exists.

Proof. By the axiom of substitution (Axiom 2.8), there exists a set B such that

B ∈ B if and only if ∃ i ∈ I such that
(
x ∈ B⇔ φ(x, i)

)
.

(a) Let the function f : I→ B be defined as follows: For each element i of the set I, let f(i) be
the set B of the set B such that

x ∈ B⇔ φ(x, i).

Set Bi := f(i). Then the family
(
Bi

)
i∈I

has the required properties.

(b) By definition of the sets B and Bi, we have B = {Bi | i ∈ I}. 2

2.12 Remark. In view of Theorem 2.11, we may define a family
(
Bi

)
i∈I

directly as
follows:

Bi := {x | φ(x, i)} or, alternatively, by

Bi := ψ(i)

provided that for each element i of the set I, the set {x | φ(x, i)} exists or that the
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expression ψ(i) defines a set.

For example, suppose that a family
(
Ai

)
i∈I

and a set C exist, and let φ(x, i) := x ∈ Ai∪C.
Then we may define

Bi := {x | φ(x, i)} = {x | x ∈ Ai ∪ C} for all i ∈ I.

Setting ψ(i) := Ai ∪ C, this definition can be abbreviated by

Bi := ψ(i) = Ai ∪ C for all i ∈ I.

Historical Notes:

The axiomatic of mathematics based on set theory is mainly due to Ernst Zermelo based on
earlier work of Richard Dedekind and Georg Cantor. He published his first version of his
axiomatic in 1908 [Zermelo 1908]. In this article the axiom of substitution is still missing as
has been noticed by Abraham Fraenkel1.

I. Die überaus scharfsinnigen Untersuchungen Zermelos sollen hierdurch nicht umge-
stoßen, sondern nur vervollständigt und befestigt werden [...]

Die sieben Zermeloschen Axiome reichen nicht aus zur Begründung der Mengenlehre.

Zum Nachweis dieser Behauptung diene etwa das folgende einfache Beispiel: Es sei Z0

die in [Zermelo 1908] definierte und als existierend nachgewiesene Menge (Zahlenreihe).
Die Potenzmenge P(Z0) (Menge aller Untermengen von Z0) werde mit Z1,P(Z1) mit Z2

bezeichnet usw. Dann gestatten die Axiome [...] nicht die Bildung der Menge {Z0, Z1, . . .},
[...] Diese bisher nicht bemerkte Lücke der Zermeloschen Begründung ist durch Hinzu-
fügung eines neuen Axioms oder Erweiterung eines vorhandenen auszufüllen [...]

Ersetzungsaxiom. Ist M eine Menge und wird jedes Element von M durch “ein Ding
des Bereiches B” (vgl. Z. S. 262) ersetzt, so geht M wiederum in eine Menge über.

See [Fraenkel 1922, pp. 230 - 231].

The extremely ingenious investigations of Zermelo are not meant to be overturned, but
only to be completed and fortified. [...]

The seven axioms of Zermelo are not sufficient to justify set theory.

The following simple example serves to prove this claim: Let Z0 be the set defined in
[Zermelo 1908] and whose existence has been shown (series of numbers). Let us denote
the power set P(Z0) (set of all subsets of Z0) by Z1 the set P(Z1) by Z2 etc. Then
the axioms [...] do not allow the formation of the set {Z0, Z1, . . .}, [...] This hitherto
undetected gap in Zermelo’s reasoning has to be filled in by adding a new axiom or
expanding an existing one.

Axiom of Substitution. If M is a set and every element of M is replaced by “a thing
of the domain B” (see Z. p. 262), then M turns into a set.

(Translation by the author.)

The domain B is the mathematical universe (see Unit Universe [Garden 2020a]).

Zermelo published a second version of his axiomatic which is today called the axiomatic ZFC
of Zermelo and Fraenkel (the letter C stands for the axiom of choice) in 1930 [Zermelo 1930].
He included the axiom of substitution in this article:

1Fraenkel changed his given name to Abraham.
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E) Axiom der Ersetzung: Ersetzt man die Elemente x einer Menge m eindeutig durch
beliebige Elemente x ′ des Bereiches, so enthält dieser auch eine Menge m ′, welche alle
diese x ′ zu Elementen hat.

See [Zermelo 1930, pp. 30-31].

E) Axiom of Substitution: If the elements x of a set m are uniquely replaced by any
elements x of the domain, the domain also contains a set m ′, which has all these x ′ as
elements.

(Translation by the author.)

3 Unions and Intersections of Families

Unions and Intersections:

3.1 Definition. Let I be an index set, let
(
Ai

)
i∈I

be a family of sets, and let A := {Ai |

i ∈ I}. We set ∪
i∈I

Ai :=
∪

A∈A

A and
∩
i∈I

Ai :=
∩

A∈A

A.

3.2 Remark. Note that, by Definition 2.2, an index set is always non-empty. It follows
that the set A := {Ai | i ∈ I} is also non-empty. As a consequence the set

∩
A∈AA is

defined.

3.3 Proposition. Let I be an index set, and let (Ai)i∈I be a family of sets.

(a) We have

x ∈
∪
i∈I

Ai if and only if x ∈ Aj for at least one element j ∈ I.

(b) We have
x ∈

∩
i∈I

Ai if and only if x ∈ Ai for all i ∈ I.

Proof. Let A := {Ai | i ∈ I}. By Definition 3.1, we have∪
i∈I

Ai =
∪

A∈A

A and
∩
i∈I

Ai =
∩

A∈A

A.

(a) The assertion follows from the fact that

x ∈
∪

A∈A

A if and only if x ∈ A for at least one set A ∈ A.

For more details see Unit Unions [Garden 2020b].

(b) The assertion follows from the fact that

x ∈
∩

A∈A

A if and only if x ∈ A for all A ∈ A.

For more details see Unit Unions [Garden 2020b]. 2
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3.4 Proposition. Let I be an index set, and let (Ai)i∈I be a family of sets.

(a) Let J be a subset of the set I. Then we have∪
j∈J

Aj ⊆
∪
i∈I

Ai.

(b) Let J be a non-empty subset of the set I. Then we have∩
j∈J

Aj ⊇
∩
i∈I

Ai.

(c) Let A and B be two sets such that A ⊆ Ai ⊆ B for all elements i of the set I. Then
we have

A ⊆
∪
i∈I

Ai ⊆ B and A ⊆
∩
i∈I

Ai ⊆ B.

(d) Let (Bi)i∈I be a family of sets such that Ai ⊆ Bi for all elements i of the set I. Then
we have ∪

i∈I

Ai ⊆
∪
i∈I

Bi and
∩
i∈I

Ai ⊆
∩
i∈I

Bi.

Proof. The proof follows from Proposition 3.3. 2

3.5 Proposition. Let I and J be two index sets, and let I =
∪

j∈J Ij for a family (Ij)j∈J

of non-empty subsets of the set I. Then we have∪
i∈I

Ai =
∪
j∈J

( ∪
k∈Ij

Ak

)
and

∩
i∈I

Ai =
∩
j∈J

( ∩
k∈Ij

Ak

)
.

Proof. (a) Let x be an element of the set
∪

i∈IAi. Then there exists an element i of the set
I such that the element x is contained in the set Ai. Since I =

∪
j∈J Ij, there exists an element

j of the set J such that the set Ij contains the element i. It follows that

x ∈ Ai ⊆
∪
k∈Ij

Ak.

It follows that ∪
i∈I

Ai ⊆
∪
j∈J

( ∪
k∈Ij

Ak

)
.

The inclusion
∪

j∈J

(∪
k∈Ij

Ak

)
⊆

∪
i∈IAi is obvious.

(b) follows as (a). 2

3.6 Remark. Proposition 3.5 generalizes the associative laws

(A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C)

introduced in Unit Unions [Garden 2020b].
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3.7 Proposition. Let I be an index set, and let (Ai)i∈I be a family of sets.

(a) We have
A ∩

(∪
i∈I

Ai

)
=

∪
i∈I

(A ∩Ai).

(b) We have
A ∪

(∩
i∈I

Ai

)
=

∩
i∈I

(A ∪Ai).

Proof. (a) Let x be an element of the set A ∩
(∪

i∈IAi

)
. Then the element x is contained

in the set A, and there exists an element i of the set I such that the element x is contained in
the set Ai. It follows that the element x is contained in the set

∪
i∈I(A ∩Ai).

Conversely, let x be an element of the set
∪

i∈I(A∩Ai). Then there exists an element i of the
set I such that the element x is contained in the set A ∩ Ai, that is, in the set A and in the
set Ai. It follows that the element x is contained in the set A ∩

(∪
i∈IAi

)
.

(b) Let x be an element of the set A ∪
(∩

i∈IAi

)
. If the element x is contained in the set A,

then the element x is obviously contained in the set
∩

i∈I(A∪Ai). If the element x is contained
in the set

(∩
i∈IAi

)
, then the element x is obviously contained in the set

∩
i∈I(A ∪ Ai). It

follows that the element x is contained in the set
(∩

i∈IAi

)
.

Conversely, let x be an element of the set
∩

i∈I(A ∪ Ai). Suppose that the element x is not
contained in the set

(∩
i∈IAi

)
. Then there exists an element k of the set I such that the

element x is not contained in the set Ak. Since

x ∈
∩
i∈I

(A ∪Ai) ⊆ A ∪Ak,

it follows that the element x is contained in the set A∩Ak. Since the element x is not contained
in the set Ak, the element x is contained in the set A. Altogether, the element x is contained
in the set A ∪

(∩
i∈IAi

)
. 2

3.8 Proposition. Let I and J be two index sets, and let (Ai)i∈I and (Bj)j∈J be two
families of sets.

(a) We have (∪
i∈I

Ai

)
∩
(∪
j∈J

Bj

)
=

∪
(i,j)∈I×J

(Ai ∩ Bj).

(b) We have (∩
i∈I

Ai

)
∪
(∩
j∈J

Bj

)
=

∩
(i,j)∈I×J

(Ai ∪ Bj).

Proof. (a) Let x be an element of the set
(∪

i∈IAi

)
∩
(∪

j∈J Bj

)
. Then there exists an

element i of the set I and an element j of the set J such that the element x is contained in the
set Ai and Bj. It follows that the element x is contained in the set

∪
(i,j)∈I×J(Ai ∩ Bj).

Conversely, let x be an element of the set
∪

(i,j)∈I×J(Ai ∩ Bj). Then there exists an element
i of the set I and an element j of the set J such that the element x is contained in the set
Ai ∩ Bj, that is, in the set Ai and Bj. It follows that the element x is contained in the set(∪

i∈IAi

)
∩
(∪

j∈J Bj

)
.

(b) Let x be an element of the set
(∩

i∈IAi

)
∪
(∩

j∈J Bj

)
. If the element x is contained in the

set
(∩

i∈IAi

)
, then the element x is obviously contained in the set

∩
(i,j)∈I×J(Ai ∪Bj). If the
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element x is contained in the set
(∩

j∈J Bj

)
, then the element x is obviously contained in the

set
∩

(i,j)∈I×J(Ai∪Bj). It follows that the element x is contained in the set
∩

(i,j)∈I×J(Ai∪Bj).

Conversely, let x be an element of the set
∩

(i,j)∈I×J(Ai ∪ Bj). Suppose that the element x is
not contained in the set

(∩
i∈IAi

)
. Then there exists an element k of the set I such that the

element x is not contained in the set Ak. Since∩
(i,j)∈I×J

(Ai ∪ Bj) ⊆
∩

(i,j)∈{k}×J

(Ai ∪ Bj) =
∩
j∈J

(Ak ∪ Bj),

it follows that the element x is contained in the set∩
j∈J

(Ak ∪ Bj) = Ak ∪
(∩
j∈J

Bj

)
(Proposition 3.7).

Since the element x is not contained in the set Ak, the element x is contained in the set(∩
j∈J Bj

)
. 2

Unions, Intersections and Direct Products:

3.9 Proposition. Let I and J be two index sets, and let (Ai)i∈I and (Bj)j∈J be two
families of sets.

(a) We have (∪
i∈I

Ai

)
×

(∪
j∈J

Bj

)
=

∪
(i,j)∈I×J

(Ai × Bj).

(b) We have (∩
i∈I

Ai

)
×

(∩
j∈J

Bj

)
=

∩
(i,j)∈I×J

(Ai × Bj).

Proof. The proof follows from Proposition 3.3. 2

Unions, Intersections and Complements:

3.10 Proposition. Let I be an index set, let A be a set, and let (Ai)i∈I be a family of
subsets of the set A. For a subset X of the set A denote by Xc := A \ X the complement
of the set X in the set A.

(a) We have (∪
i∈I

Ai

)c
=

∩
i∈I

Ac
i .

(b) We have (∩
i∈I

Ai

)c
=

∪
i∈I

Ac
i .

Proof. (a) Let x be an element of the set
(∪

i∈IAi

)c. Then the element x is not contained
in any set Ai implying that the element x is contained in the set

∩
i∈IA

c
i .

Conversely, let x be an element of the set
∩

i∈IA
c
i . Assume that the element x is not contained

in the set
(∪

i∈IAi

)c. Then the element x is contained in the set
∪

i∈IAi. Hence, there exists
an element j of the set I such that the element x is contained in the set Aj, in contradiction
to the assumption that the element x is contained in the set

∩
i∈IA

c
i .
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(b) It follow from (a) that(∪
i∈I

Ac
i

)c
=

∩
i∈I

(
Ac

i

)c
=

∩
i∈I

Ai, hence
∪
i∈I

Ac
i =

(∩
i∈I

Ai

)c
.

2

3.11 Remark. Note that Proposition 3.10 generalizes de Morgan’s laws explained in Unit
Unions [Garden 2020b].

Unions, Intersections and Inverse Images:

3.12 Proposition. Let I be an index set, let A and B be two sets, and let (Bi)i∈I a
family of subsets of the set B. Let f : A → B be a function from the set A into a set B.
Then we have

f−1
(∪
i∈I

Bi

)
=

∪
i∈I

f−1(Bi) and f−1
(∩
i∈I

Bi

)
=

∩
i∈I

f−1(Bi).

Proof. Let x be an element of the set f−1
(∪

i∈I Bi

)
. Then the element f(x) is contained

in the set
∪

i∈I Bi. Hence, there exists an element j of the set I such that the element f(x) is
contained in the set Bj, that is, the element x is contained in the set f−1(Bj). In particular,
we have

x ∈
∪
i∈I

f−1(Bi).

Conversely, let x be an element of the set
∪

i∈I f
−1(Bi). Then there exists an element j of

the set I such that the element x is contained in the set f−1(Bj), that is, the element f(x) is
contained in the set Bj. In particular, the element f(x) is contained in the set

∪
i∈I Bi implying

that
x ∈ f−1

(∪
i∈I

Bi

)
.

The second part follows in the same way. 2

Extensions of Functions:

3.13 Proposition. Let I be an index set, and let (Ai)i∈I and (Bi)i∈I be two families of
non-empty sets. For each element i of the set I let fi : Ai → Bi be a function from the
set Ai into the set Bi.

Suppose that for each two elements i and j of the set I, we have fi(x) = fj(x) for all
elements x of the set Ai ∩Aj.a

(a) There exists a function
f :

∪
i∈I

Ai → ∪
i∈I

Bi

such that f|Ai
= fi for all elements i of the set I.

(b) If the functions fi : Ai → Bi are surjective for all elements i of the set I, then the
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function f :
∪

i∈IAi → ∪
i∈I Bi is also surjective.

aNote that this implies that fi(x) = fj(x) ∈ Bi ∩Bj for all x ∈ Ai ∩Aj.

Proof. (a) Let i be an element of the set I. Then the function fi : Ai → Bi is a subset of the
direct product Ai × Bi with the property that for each element xi of the set Ai, there exists
exactly one element yi of the set Bi such that the pair (xi, yi) is contained in the set fi. Set

f :=
∪
i∈I

fi.

Then the set f is a subset of the set∪
i∈I

(Ai × Bi) ⊆
∪

(i,j)∈I×J

(Ai × Bj) =
(∪

i∈I

Ai

)
×

(∪
i∈I

Bi

)
(Proposition 3.9).

Let x be an element of the set
∪

i∈IAi. Since there exists an element i of the set I such that
the element x is contained in the set Ai, we have(

x, fi(x)
)
∈ fi ⊆

∪
i∈I

fi = f.

Assume that there exist two different pairs (x, y1) and (x, y2) in the set f. Since each of the
sets fi are functions, there must exist two indices i and j such that

(x, y1) ∈ fi and (x, y2) ∈ fj.

It follows that the element x is contained in the set Ai ∩Aj, and we get

y1 = fi(x) = fj(x) = y2,

a contradiction.

Hence, the set f is a function, and we have f(xi) = fi(xi) for all elements xi of the set Ai.

(b) Let y be an element of the set
∪

i∈I Bi. Then there exists an element j of the set I such
that the element y is contained in the set Bj. Since the function fj : Aj → Bj is surjective,
there exists an element x of the set Aj such that f(x) = fj(x) = y. 2

3.14 Proposition. Let I be an index set, let (Ai)i∈I and (Bi)i∈I be two families of non-
empty sets, and suppose that the sets (Ai)i∈I and the sets (Bi)i∈I are pairwise disjoint.
For each element i of the set I let fi : Ai → Bi be a function from the set Ai into the set
Bi.

(a) There exists a function
f :

∪
i∈I

Ai → ∪
i∈I

Bi

such that
f(x) = fi(x) for all x ∈ Ai and for all i ∈ I.

(b) If the functions fi : Ai → Bi are injective for all elements i of the set I, then the
function f :

∪
i∈IAi → ∪

i∈I Bi is also injective.

(c) If the functions fi : Ai → Bi are surjective for all elements i of the set I, then the
function f :

∪
i∈IAi → ∪

i∈I Bi is also surjective.
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(d) If the functions fi : Ai → Bi are bijective for all elements i of the set I, then the
function f :

∪
i∈IAi → ∪

i∈I Bi is also bijective.

Proof. (a) follows from Proposition 3.13.

(b) Suppose that f(x) = f(x ′) for two elements x and x ′ of the set
∪

i∈IAi. Then there exists
an element i of the set I such that the element f(x) = f(x ′) is contained in the set Bi.

Since the sets (Bi)i∈I are pairwise disjoint, it follows that the elements x and x ′ are contained
in the set Ai and that fi(x) = f(x) = f(x ′) = fi(x

′). Since the function fi : Ai → Bi is
injective, we have x = x ′.

(c) follows from Proposition 3.13.

(d) follows from (b) and (c). 2

4 The Direct Product of Arbitrary Many Sets

An Alternative Description of the Direct Product of two Sets:

We recall the definition of the direct product of two sets explained in Union Direct Products
[Garden 2020c]:

4.1 Definition. Let a and b be two sets.

The ordered pair (a, b) is defined by (a, b) :=
{
{a}, {a, b}

}
.

4.2 Definition. Let A and B be two sets. Set

A× B := {x ∈ P
(
P(A ∪ B)

)
| ∃ a ∈ A ∃ b ∈ B s.t. x = (a, b)}.

(a) The set A × B is called the direct product of the sets A and B or, equivalently,
the Cartesian product of the sets A and B.

(b) We write A× B := {(a, b) | a ∈ A and b ∈ B} for short.

4.3 Proposition. Let A and B be two non-empty sets, let I := {A,B}, and let

Z := {z : I→ A ∪ B | zA := z(A) ∈ A and zB := z(B) ∈ B}

be the set of the functions z : I = {A,B} → A ∪ B such that the elements z(A) and z(B)
are contained in the sets A and B, respectively.

Then the mapping
γ : Z→ A× B; γ : z 7→ (zA, zB)

is a bijective mapping from the set Z onto the direct product A× B.

Proof. Step 1. The mapping γ : Z→ A× B is surjective:

For, let (a, b) be an element of the set A × B. Let z : I → A ∪ B be the function defined by
z(A) := a and z(B) := b. Then the function z : I → A ∪ B is an element of the set Z, and we
have

γ : z 7→ (zA, zB) =
(
z(A), z(B)

)
= (a, b).
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Step 2. The mapping γ : Z→ A× B is injective:

Let z and z ′ be two functions of the set Z such that γ(z) = γ(z ′). Then we have (zA, zB) =

(z ′A, z
′
B) implying that

z(A) = zA = z ′A = z ′(A) and z(B) = zB = z ′B = z ′(B).

By Proposition 2.5, it follows that z = z ′. 2

4.4 Remark. Let A and B be two non-empty sets, let I := {A,B}, and let

Z := {z : I→ A ∪ B | zA := z(A) ∈ A and zB := z(B) ∈ B}

be the set of the functions z : I = {A,B} → A ∪ B such that the elements z(A) and z(B)
are contained in the sets A and B, respectively.

Identifying the sets Z and A×B (see Proposition 4.3) we can say that the product A×B
consists of the families (zi)i∈{A,B} such that the elements z(A) and z(B) are contained in
the sets A and B, respectively. If we denote the family (zi)i∈{A,B} by (zA, zB), we get

A× B = {(zA, zB) | zA ∈ A and zB ∈ B}.

We will use this alternative definition of a direct product of two sets as a template for
defining the direct product of arbitrary many sets.

4.5 Definition. Let I be an index set, and let (Ai)i∈I be a family of sets.

(a) The direct product A of the sets Ai is defined as follows:

A :=
{
z : I→ ∪

i∈I

Ai | zi := z(i) ∈ Ai for all i ∈ I
}

=
{
(zi)i∈I | zi ∈ Ai for all i ∈ I

}
.

(b) The direct product A of the sets Ai is denoted by

A :=
∏
i∈I

Ai.

French / German. Direct product = Produit direct = Direktes Produkt.

4.6 Remark. The definition of the direct product has the little disadvantage that the
direct product of two sets is defined in two different ways. On the one hand we have the
definition

A× B = {(a, b) | a ∈ A, b ∈ B}

according to Definition 4.1. On the other hand, we have Definition 4.5. Of course, it
would have been possible to call the first variant the weak direct product and the second
variant the direct product, but traditionally both variants are called the direct product
and are used simultaneously.

Elementary Properties of the Direct Product:
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4.7 Proposition. Let I be an index set, let (Ai)i∈I be a family of sets, and let a =
(
ai
)
i∈I

and b =
(
bi
)
i∈I

be two elements of the set A :=
∏

i∈IAi. Then we have

a = b if and only if ai = bi for all i ∈ I.

Proof. The proof follows from Theorem 2.6. 2

4.8 Proposition. Let I be an index set, let (Ai)i∈I be a family of sets, and let A :=∏
i∈IAi be the direct product of the sets Ai.

If Aj = ∅ for at least one element j of the set I, then we have A = ∅.

Proof. Assume that A ̸= ∅. Then there exists a function z : I → ∪
i∈IAi such that the

elements z(i) are contained in the sets Ai for all elements i of the set I. In particular, the
element z(j) is contained in the set Aj, in contradiction to the assumption that Aj = ∅. 2

4.9 Remark. The converse (If the sets Ai are non-empty for all elements i of the set
I, then the direct product A is also non-empty) will be introduced as a further axiom,
the so-called axiom of choice (see Axiom 5.1).

5 The Axiom of Choice

The Axiom of Choice:

5.1 Axiom. (ZFC-9: The Axiom of Choice) Let I be an index set, and let (Xi)i∈I

be a family of non-empty sets. Then the direct product

X :=
∏
i∈I

Xi

is also a non-empty set.

French / German. Axiom of choice = Axiome du choix = Auswahlaxiom.

Elementary Conclusions from the Axiom of Choice:

5.2 Proposition. Let I be an index set, and let (Xi)i∈I be a family of non-empty sets.
Then there exists a family (xi)i∈I of elements such that the element xi is contained in the
set Xi for all elements i of the set I.

Proof. Let
X :=

∏
i∈I

Xi =
{
(xi)i∈I | xi ∈ Xi

}
.

By the axiom of choice, we have X ̸= ∅. The assertion follows. 2
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5.3 Theorem. Let C be a non-empty set of non-empty sets. Then there exists a function

f : C → ∪
C∈C

C

such that the element f(X) is contained in the set X for all elements X of the set C.

Proof. It follows from the axiom of choice that the direct product A :=
∏

X∈C X is non-
empty. Let f be an element of the set A. By definition of the direct product (Definition 4.5,
see also Definition 2.3), the element f is a function

f : C → ∪
X∈C

X

such that f(X) ∈ X for all elements X of the set C. 2

5.4 Remark. Theorem 5.3 motivates the name of the axiom of choice. The function

f : C → ∪
X∈C

X

chooses from each (non-empty) set X of the (non-empty) set C an element f(X). The
function f is sometimes called a choice function.

5.5 Theorem. Let S be a non-empty set. Then there exists a function

f : P(S) \ {∅} → S

from the set of the non-empty subsets of the set S into the set S such that the element
f(X) is contained in the set X for all non-empty subsets X of the set S.

Proof. The assertion follows from Theorem 5.3 by setting

C := {X ∈ P(S) | X ̸= ∅}.

2

Historical Notes:

Ernst Zermelo used the axiom of choice in his proof of the theorem that every set can be
endowed with a well ordering (for more details about well ordered sets see Unit Well Ordered
Sets). He explicitly points out that the proof of his theorem relies on the axiom of choice:

Der vorliegende Beweis beruht auf der Voraussetzung, dass [...] es auch für eine unend-
liche Gesamtheit von Mengen immer Zuordnungen gibt, bei denen jeder Menge eines
ihrer Elemente entspricht, oder formal ausgedrückt, dass das Produkt einer unendlichen
Gesamtheit von Mengen, deren jede mindestens ein Element enthält, selbst von 0 ver-
schieden ist.

[...]

Dieses logische Prinzip lässt sich zwar nicht auf ein noch einfacheres zurückführen, wird
aber in der mathematischen Deduktion überall unbedenklich angewendet.
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See [Zermelo 1904, p. 516].

The present proof rests upon the assumption that [...] even for an infinite totality of
sets there are always mappings that associate with every set one of its elements, or,
expressed formally, that the product of an infinite totality of sets, each containing at
least one element itself differs from zero.

[...]

This logical principle cannot, to be sure, be reduced to a still simpler one, but it is applied
without hesitation everywhere in mathematical deductions.

See [Zermelo 1967b, p. 141].

“Differs from 0” just means that the set is not empty. In 1908 Zermelo published his first list
of axioms which contains the axiom of choice:

Um nun den Satz zu gewinnen, dass ein Produkt mehrerer Mengen nur dann verschwin-
den (d.h. der Nullmenge gleich sein) kann, wenn ein Faktor verschwindet, brauchen wir
ein weiteres Axiom.

Axiom VI. Ist T eine Menge, deren sämtliche Elemente von 0 verschiedene Mengen
und untereinander elementfremd sind, so enthält ihre Vereinigung ST mindestens eine
Untermenge S1, welche mit jedem Elemente von T ein und nur ein Element gemein hat.
(Axiom der Auswahl)

Man kann das Axiom auch so ausdrücken, dass man sagt, es sei immer möglich, aus
jedem Elemente M,N,R, . . . von T ein einzelnes Element m,n, r, . . . auszuwählen und alle
diese Elemente zu einer Menge zu vereinigen.

See [Zermelo 1908, p. 266].

In order, now, to obtain the theorem that the product of several sets can vanish (that is, be
equal to the null set) only if a factor vanishes we need a further axiom.

Axiom VI. (Axiom of Choice) If T is a set whose elements all are sets that are different
from 0 and mutually disjoint, its union ST includes at least one subset S1 having one and only
one element in common with each element of T .

We can also express this axiom by saying that ist is always possible to choose a single element
from each element M,N,R, . . . of T and to combine all the chosen elements m,n, r, . . . into a
set S1.

See [Zermelo 1967a, p. 204].

6 Projections

Definition of Projections:

6.1 Definition. Let I be an index set, let (Ai)i∈I be a family of sets, and letA :=
∏

i∈IAi

be the direct product of the sets Ai.

(a) For an element j of the set I, we define the function

prj : A→ Aj by prj : x = (xi)i∈I 7→ xj.

The function prj : A→ Aj is called the projection from the set A onto the set Aj.
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(b) For a subset J of the set I, we define the function

prJ : A→ ∏
j∈J

Aj by prJ : x = (xi)i∈I 7→ (xj)j∈J.

The function prJ : A → Aj is called the projection from the set A onto the set∏
j∈JAj.

French / German. Projection = Projection = Projektion.

Elementary Properties of Projections:

6.2 Proposition. Let I be an index set, let (Ai)i∈I be a family of non-empty sets, and
let A :=

∏
i∈IAi be the direct product of the sets Ai.

(a) Let j be an element of the set I. Then the projection prj : A→ Aj is surjective.

(b) Let J be a subset of the set I. Then the projection prJ : A→ ∏
j∈JAj is surjective.

Proof. (a) Let yj be an element of the set Aj. By the axiom of choice (Axiom 5.1), there
exists an element (xi)i∈I of the direct product A. Note that the element (xi)i∈I is a function
f : I→ ∪

i∈IAi such that the element xi := f(i) is contained in the set Ai for all elements i of
the set I (Definition 4.5).

Define the function g : I→ ∪
i∈IAi by

g(i) :=

{
xi if i ̸= j
yi if i = j.

Then the function g : I→ ∪
i∈IAi is an element of the set A, and we have prj(g) = yj.

(b) The proof is as in (a): For an element (yj)j∈J of the set
∏

j∈JAj, let (xi)i∈I be an arbitrary
element of the direct product A, and define the function g : I→ ∪

i∈IAi by

g(i) :=

{
xi if i /∈ J
yi if i ∈ J.

Then the function g : I→ ∪
i∈IAi is an element of the set A, and we have prJ(g) = (yj)j∈J. 2

6.3 Proposition. Let I and J be two index sets, let (Ij)j∈J be a partition of the set I,a

and let (Ai)i∈I be a family of sets. Define the function

p :
∏
i∈I

Ai → ∏
j∈J

( ∏
k∈IJ

Ak

)
by p : x = (xi)i∈I 7→ (

prIj(x)
)
j∈J
.

Then the function p :
∏

i∈IAi → ∏
j∈J

(∏
k∈IJ

Ak

)
is bijective.

aThe family (Ij)j∈J is a partition of the set I if we have
∪

j∈J Ij = I and if Ij ∩ Ik = ∅ for all elements
j and k of the set J such that j ̸= k. For more details see Unit Direct Product [Garden 2020c].

Proof. Step 1. The function p :
∏

i∈IAi → ∏
j∈J

(∏
k∈IJ

Ak

)
is injective:

For, let x = (xi) and y = (yi) be two elements of the direct product
∏

i∈IAi such that
p(x) = p(y). By definition of the function p, it follows that(

prIj(x)
)
j∈J

=
(
prIj(y)

)
j∈J
, that is, xk = yk for all k ∈ Ij and all j ∈ J.
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Since I =
∪

j∈J Ij, we obtain xi = yi for all elements i of the set I, that is, x = y.

Step 2. The function p :
∏

i∈IAi → ∏
j∈J

(∏
k∈IJ

Ak

)
is surjective:

For, let y = (yj)j∈J be an element of the set
∏

j∈J

(∏
k∈IJ

Ak

)
with yj = (zjk)k∈Ij . Let i be

an element of the set i. Since I =
∪

j∈J Ij (disjoint union), there exists exactly one element j
of the set J such that the element i is contained in the set J. Hence, there exists exactly one
element jk of the set Ij such that i = jk.

Define the function x : I→ ∪
i∈IAi by x : i 7→ zi = zjk . It follows that p(x) = y. 2

Extensions of Functions:

6.4 Proposition. Let I be an index set, and let
(
Ai

)
i∈I

and
(
Bi

)
i∈I

be two families of
sets. For each element i of the set I, let fi : Ai → Bi be a function from the set Ai into
the set Bi.

Define the function
f : A :=

∏
i∈I

Ai → B :=
∏
i∈I

Bi

from the set A into the set B as follows:

Let x =
(
xi
)
i∈I

be an element of the set A. Set

f(x) :=
(
fi(xi)

)
i∈I

∈ B.

(a) If the functions fi : Ai → Bi are injective for all elements i of the set I, then the
function f : A→ B is injective.

(b) If the functions fi : Ai → Bi are surjective for all elements i of the set I, then the
function f : A→ B is surjective.

(c) If the functions fi : Ai → Bi are bijective for all elements i of the set I, then the
function f : A→ B is bijective.

Proof. (a) Let x = (xi) and y = (yi) be two elements of the set A such that(
fi(xi)

)
i∈I

= f(x) = f(y) =
(
fi(yi)

)
i∈I
.

By Proposition 4.7, we have fi(xi) = fi(yi) for all elements i of the set I. Since the functions
fi : Ai → Bi are injective, we get xi = yi for all elements i of the set I. Again by Proposition
4.7, we get x = y.

(b) Let b = (bi) be an element of the set B. Since the functions fi : Ai → Bi are surjective,
for each element i of the set I, there exists an element ai of the set Ai such that fi(ai) = bi.
Let a := (ai)i∈I. Then it follows that f(a) = b.

(c) follows from (a) and (b). 2

7 Notes and References
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